

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Ph: +91 9385339863 | www.threatenedtaxa.orgEmail: sanjay@threatenedtaxa.org**EDITORS****Founder & Chief Editor****Dr. Sanjay Molur**Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India**Deputy Chief Editor****Dr. Neelesh Dahanukar**

Noida, Uttar Pradesh, India

Managing Editor**Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, India**Associate Editors****Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Dr. B.A. Daniel**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Editorial Board****Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNASc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2019–2021****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinando Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjani Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasimhan**, Botanical Survey of India, Howrah, India**Dr. Larry R. Nobile**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Baños, Laguna, Philippines**Dr. P.A. Sinu**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawde**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, Bangladesh**Mr. Jatishwar Singh Irungbam**, Biology Centre CAS, Branišovská, Czech Republic.**Dr. Ian J. Kitching**, Natural History Museum, Cromwell Road, UKFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Green Bee-eater with colour pencils and watercolor wash by Elakshi Mahika Molur.

Redefining *Pallisentis ophiocephali* (Thapar, 1930) Baylis, 1933 from two freshwater fishes of Channidae family of Hooghly District, West Bengal, India

Prabir Banerjee¹ & Biplob Kumar Modak²

¹Jarura Sikshaniketan, P.O. Jarura, P.S. Polba, Dist. Hooghly, West Bengal 712138, India.

²Department of Zoology, Sidho-Kanho-Birsha University, Purulia, West Bengal 723104, India.

¹banerjee.prabir@gmail.com, ²bkmodak09@gmail.com (corresponding author)

Abstract: The genus *Pallisentis* has been mostly found among the freshwater fishes of Channidae family. *Pallisentis ophiocephali* is characterized with some unique characters of proboscis, hooks, and spines. However, initial description is a little sketchy and yet not updated. The present study communicates the detail morphology of an acanthocephalan species obtained from two host fishes of Channidae family—*Channa striatus* and *Channa punctatus*—during a one-year survey from different places of Hooghly District, West Bengal. The parasite is examined under light microscope as well as under scanning electron microscope. Unique four hook circles with different sizes, collar, and trunk spines, male and female genital organs are described for taxonomic study. Scanning electron microscopic study also provides the detailed information about the surface topography including longitudinal muscle, retractor muscles, and posterior ends. Comparing the studied specimen with other closely related species, the present acanthocephalan specimen has been identified as *P. ophiocephali* from *Channa striatus*. The retractable nature of proboscis has also been studied from the live specimens with the help of light microscope.

Keywords: Acanthocephalan, *Channa punctatus*, *Channa striatus*, retractable proboscis.

Editor: Arup Kumar Hazarika, Cotton University, Guwahati, Assam.

Date of publication: 26 March 2023 (online & print)

Citation: Banerjee, P. & B.K. Modak (2023). Redefining *Pallisentis ophiocephali* (Thapar, 1930) Baylis, 1933 from two freshwater fishes of Channidae family of Hooghly District, West Bengal, India. *Journal of Threatened Taxa* 15(3): 22841–22849. <https://doi.org/10.11609/jott.7847.15.3.22841-22849>

Copyright: © Banerjee & Modak 2023. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interests: The authors declare no competing interests.

Author details: P. BANERJEE—assistant teacher of Biology in Jarura Sikshaniketan (School), Hooghly and research scholar of Sidho-Kanho-Birsha University, Purulia, West Bengal. His research interest lies in the biosystematics of parasite of edible freshwater fishes. He is specialized in morphometric as well as molecular studies of myxozoans. B.K. MODAK—professor of Zoology, presently working at Sidho-Kanho-Birsha University, Purulia, West Bengal. He is mostly engaged in research on parasitology, ethnobiology and biodiversity. His parasitological works based on the biosystematics study of various invertebrate and vertebrate parasites like gregarines, myxozoans and helminthes.

Author contributions: Authors have the equal contributions to do the entire research work.

Acknowledgements: Authors would like to thank the Department of Zoology of Sidho-Kanho-Birsha University, Purulia for giving permission to do the work. Corresponding author is thankful to DSTFIST [No. SR/FST-LSI/2018/173(c) dated 18/09/2019 for infrastructural support. Authors are also like to express their sincere thanks to the fishermen of the district who generously spent time during the study and shared their expertise in connection with the local fishes.

INTRODUCTION

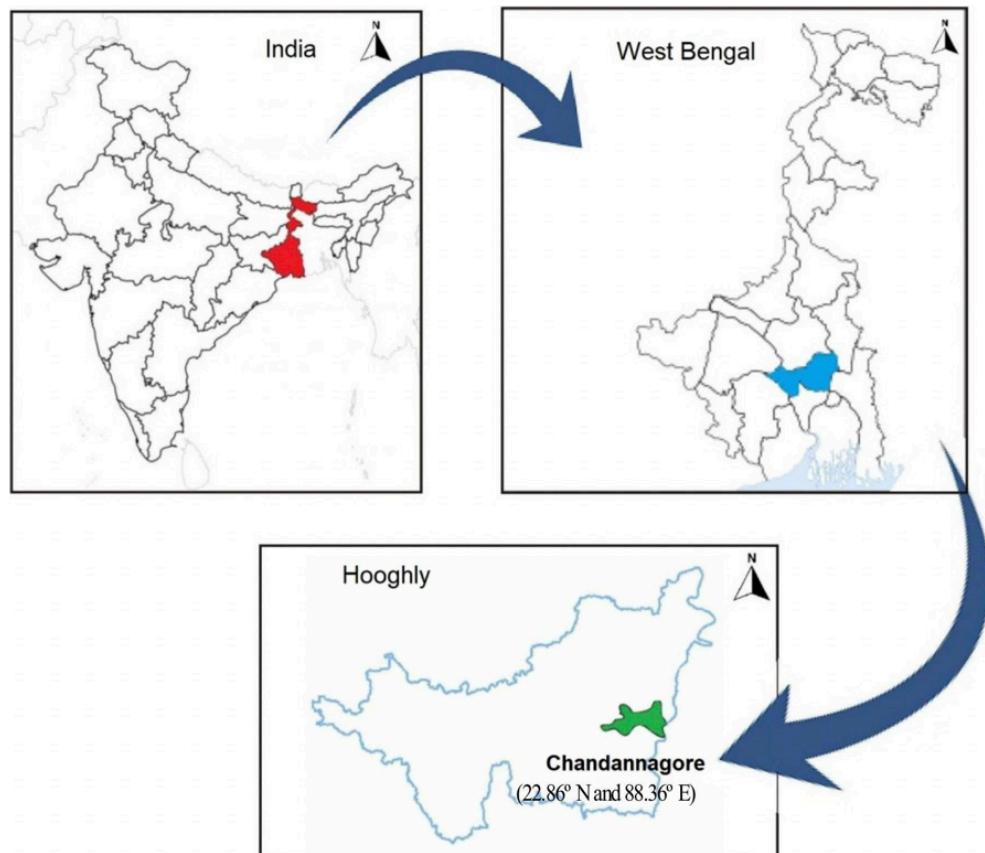
Species of the genus *Pallisentis* has been mostly found among the freshwater fishes of Channidae family. The genus *Pallisentis* has been considered in the family of Quadrigyridae Van Cleave (1920) in the subfamily Pallisentinae Van Cleave (1928) (Harada 1935; Yamaguti 1963). Amin et al. (2000) revised the characters of the genus *Pallisentis* under the subgenus *Demidueterospinus*. Thapar (1930) & Baylis (1933) described the species *Pallisentis ophiocephali*. According to Thapar (1930), *Farzandia* is a new genus, whereas, Baylis (1933) considered the genus as synonymous to *Pallisentis*. The type species *P. ophiocephali* was first reported from fresh water fish *Channa marulius* in different places of India (Andhra Pradesh, Odisha, Uttar Pradesh). Soota & Bhattacharya (1982) revised the validity of the species in the genus *Pallisentis* from India. Later Gupta et al. (2012) mentioned two host fishes (family: Channidae) of the genus *Pallisentis* from Bareilly, Uttar Pradesh. Gupta et al. (2015) described the ultrastructure of another species, *P. punctati*, from Bareilly, Uttar Pradesh from the host *C. punctatus*. The present study has been carried out to understand the structural details of proboscis, hooks, spines, and genital parts from light microscopic as well as from scanning electron microscopic study and also to study the retractable nature of unique thorny proboscis from the live specimens.

MATERIALS AND METHODS

In order to study the prevalence of intestinal acanthocephalan infection among different freshwater fishes from July 2014–August 2015, 50 specimens of *Channa punctatus* (average length 15.4 cm and weight 190 g) and 47 specimens of *Channa striatus* (average length 18.7 cm and weight 320 g) were examined in Chandannagore (22.86°N & 88.36°E) of Hooghly District, West Bengal (Figure 1).

The fish samples were identified after Dey (1996), Talwar & Jhingran (1991). The classification of fishes was done following the keys of Jayaram (1999). White tape-like parasites were found tightly anchored through the proboscis in the intestinal wall of the host fishes. The specimens were carefully removed with a fine brush. Then they were collected and preserved following the methods of Soota (1980). All the parasites were washed by shaking thoroughly in physiological saline and transferred to 70% alcohol for their use in light microscope (LM) study. Pictures were taken with the

help of Labomed CXL microscope. Measurements (based on 20 specimens) were recorded in millimetres and represented by mean followed by ranges. Schematic illustrations were drawn using the software CorelDraw 12, a vector graphics editor by Corel Corporation. For scanning electron microscopic study, specimens were preserved in 4% glutaraldehyde. Then they were transferred to 30%, 50%, and 70% alcohol respectively. After that the specimens were passed through a mixture of absolute alcohol and amyl acetate in 3:1, 1:1 for half an hour and then in 1:3 ratio for two hours. Lastly, they were transferred into 100% amyl acetate. After Critical Point Drying (CPD) the specimens were coated with gold and photos were taken under scanning electron microscope (Hitachi; S-530).


RESULTS

The present acanthocephalan species were collected from the intestinal wall of the host fishes. Among the collected specimens of the parasite, 20 male and 25 female were identified after studying under a light microscope. The species showed the structural details under light and scanning electron microscopic study.

General body structure: White in colour, cylindrical and 5.9–19.4 mm in length (Figure 2A; Image 1A). The body is divided into three regions: proboscis, short neck, and elongated trunk region. Proboscis; with recurved hooks, looks globular just erecting from proboscis receptacle and it seems subglobular when fully erected (Figure 2C; Image 1C, 3C). Proboscis receptacle is sac like; cylindrical, single walled, and measures 0.39 (0.38–0.42) mm x 0.104 (0.10–0.12) mm (Image 1B). Two unequal, ribbon like, coiled lemnisci are present within the body cavity. They measure 1.562 (1.553–1.575) mm and 1.861 (1.857–1.920) mm (Image 1B). Anterior and middle part of the body is marked by several circlets of characteristics collar spines and body or trunk spines.

Proboscis hooks: The proboscis is armed with four circles (H1, H2, H3, and H4) of recurved hooks and each circlet contains eight hooks (Image 3C). The hooks are similar in shape but different in size (Figure 2F). The hooks are deeply rooted in the proboscis wall and without any striations or grooves. Hooks are dagger shaped (Figure 2G; Image 3D). Initial 0.020–0.028 mm of the hook is projected upwards and the rest bends outwardly. Each hook consists of a backwardly projected blade; a horizontally directed root and a handle embedded into the proboscis wall (Figure 2G; Image 3D).

Neck: A short neck, 0.19–0.29 mm, is present in

Figure 1. Survey area of *Pallisentis ophiocephali* (Thapar, 1930) Baylis (1933) Chandannagore (22.86°N & 88.36°E) in Hooghly, West Bengal, India.

between the proboscis and the body. The retractor muscles are seen in the neck region (Image 3B). The parasite retracts the proboscis along with the neck into the proboscis receptacle.

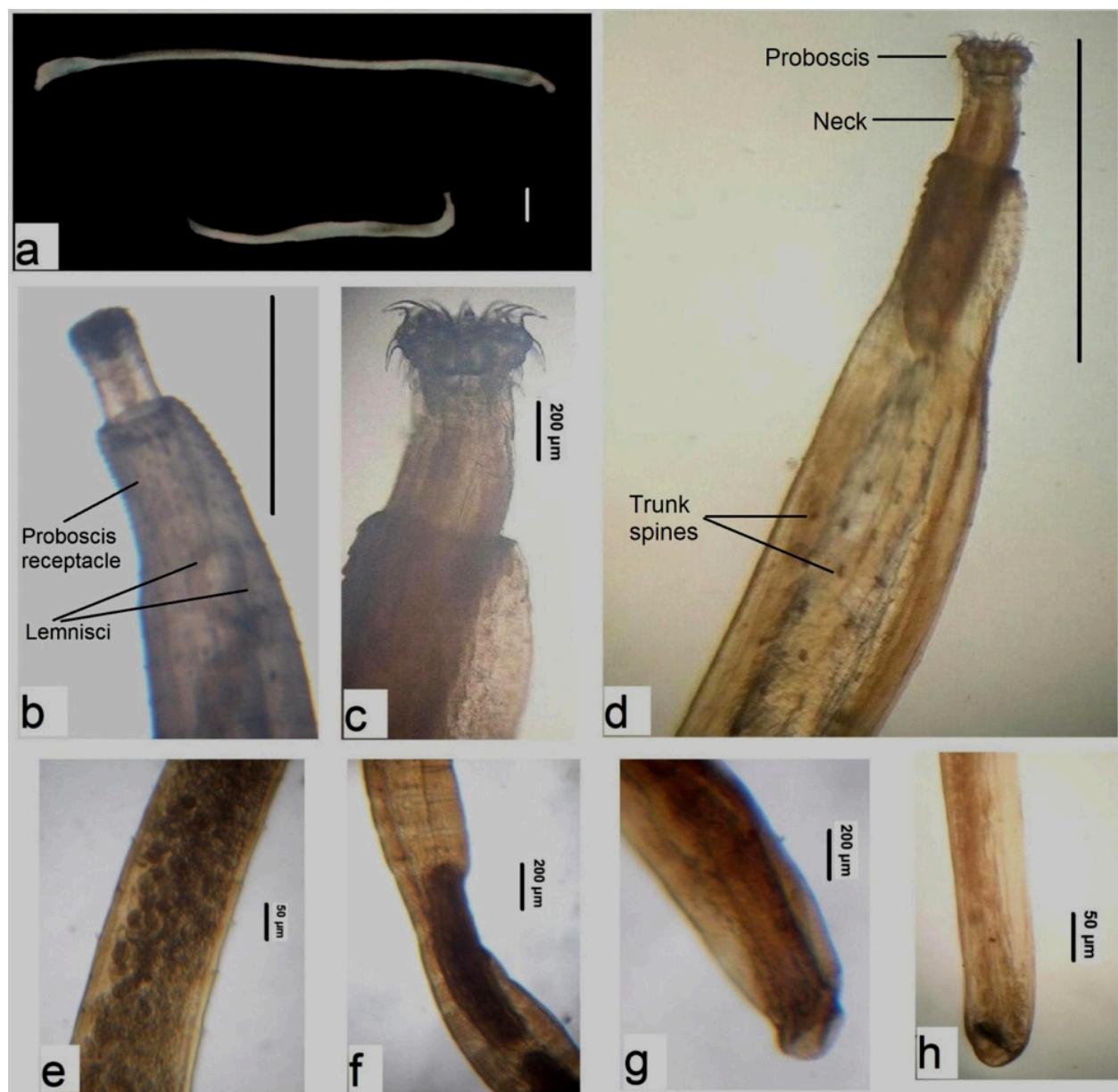
Collar spines: Behind the neck, there are 13–16 circlets of collar spines and measure 0.027 (0.026–0.030) mm (Figure 2A,H). Collar spines are pepal leaf shaped structure, from the base it tapers gradually but at the distal end it tapers abruptly and ends in a tip. The base of the spine is 0.044 mm in average. The middle portion of the spine bulges outwardly and forms convex surface (Figure 2H; Image 3E,F).

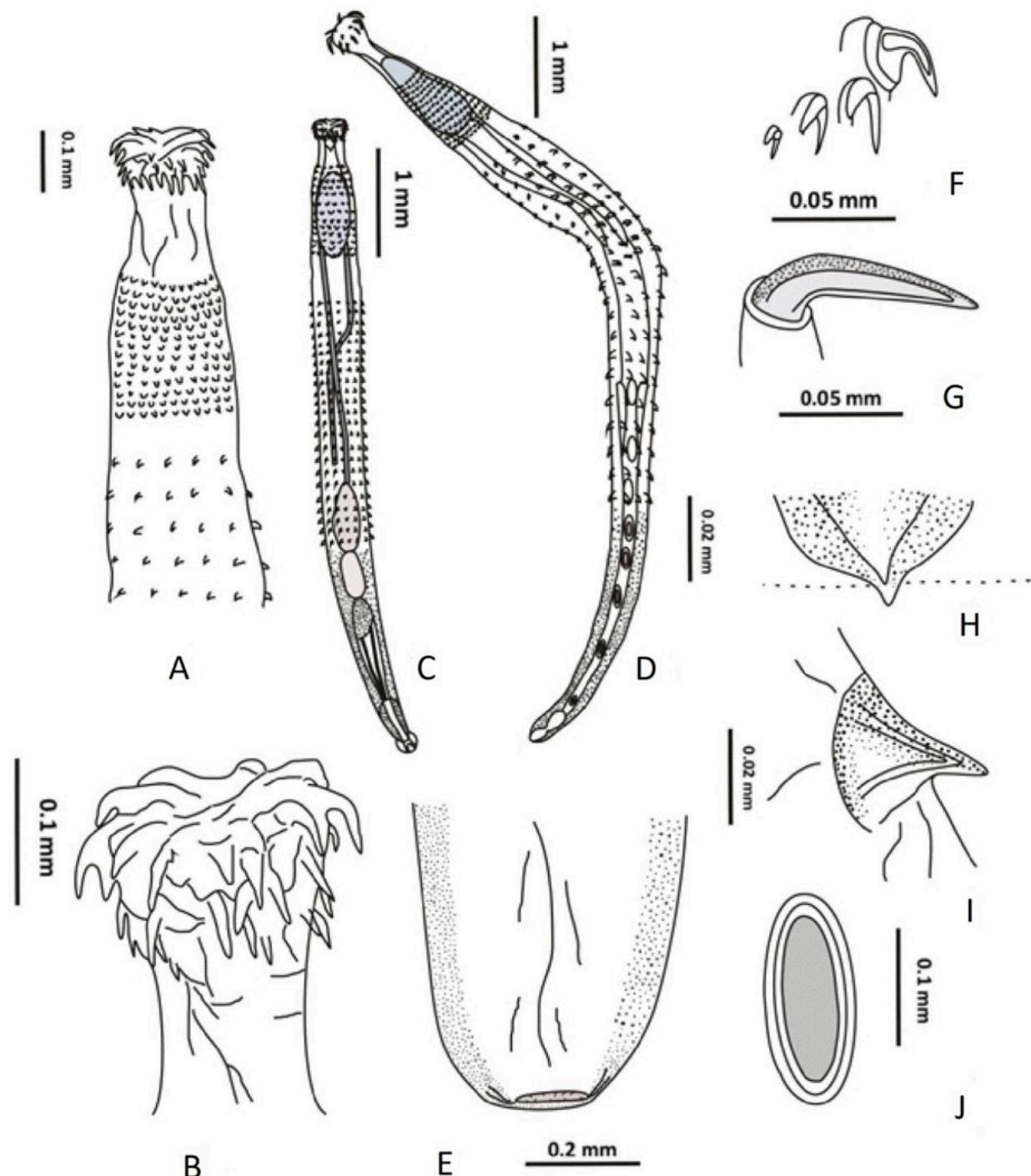
Collar spines zone is followed by a spine free zone of 0.11–0.165 mm and body spines zone.

Body or trunk spines: The spine is pointed and projected downwards from a strong rounded base. Body is lined with longitudinal striations. Cement gland is single and syncytial with four–five nuclei. Distance between two spines within a row is 0.075 (0.072–0.078) mm. Distance between two rows is 0.25 (0.244–0.252) mm. Striations are of 0.075 (0.072–0.076) mm distance from each other (Figure 2I; Image 3G,H).

Male (Based on 20 specimens): The male is short and measures 6.1 (5.9–8.2) x 0.32 (0.28–0.33) mm (Figure 2C). Proboscis is 0.16 (0.16–0.18) x 0.21 (0.19–0.23) mm. Hooks in first–fourth circle are in the measure of 0.065 (0.064–0.067) mm, 0.06 (0.059–0.062) mm, 0.044 (0.042–0.047) mm, and 0.032 (0.031–0.034) mm respectively. Neck is 0.203 (0.19–0.21) x 0.209 (0.207–0.21) mm. Collar spines are in 13–14 transverse circles, each with 16–17 spines. The length of the collar spines is 0.023 (0.022–0.024) mm. Trunk spines are in 26–29 circles. Numbers of trunk spines range from 14–15 in each circle. The length of the spines is 0.034 (0.032–0.036) mm. Testes are equal and measures 0.621 (0.616–0.643) mm. From each testis a vas deferens emerges and associates with cement gland, cement reservoir, and joins bursa. The bursa measures 0.181 (0.176–0.192) mm in length (Image 1G).

Female (Based on 25 specimens): Females are larger than males. It measures 17.1 (16.7–19.4) x 0.54 (0.52–0.60) mm (Figure 2D). Proboscis measures 0.18 (0.17–0.20) x 0.21 (0.19–0.23) mm. Proboscis hooks measure 0.079 (0.077–0.080) mm, 0.067 (0.065–0.072)




Image 1. Light microscopic pictures of *Pallisenitis ophiocephali* (Thapar, 1930) Baylis, 1933: A—Adult specimens | B—Anterior region of male | C—Proboscis | D—Anterior region of female | E—Middle portion of female | F—Middle portion of male | G—Posterior region of male | H—Posterior region of female. (Bar = 1 mm). © Prabir Banerjee.

mm, 0.052 (0.048–0.053) mm, and 0.037 (0.032–0.044) mm respectively in the four successive circlets. The neck measured 0.282 (0.280–0.293) x 0.206 (0.202–0.21) mm. Collar spines are arranged in 14–16 circles. Each circle of collar spines is layered with 16–17 spines. Collar spines are 0.027 (0.026–0.030) mm in length. Numbers of circles of body spines range from 57–60 and, there are 14–15 spines in each circle. Trunk spines are 0.044 (0.042–0.046) mm in length. Whole body cavity of mature worm is filled with large number of eggs (Figure 2J; Image 1H). Eggs are 0.053 (0.051–0.062) x 0.022 (0.021–0.033) mm

and ovarian balls are 0.107(0.105–0.113) x 0.051(0.050–0.054) mm (Image 1E). The posterior region is rounded with a small gonopore (Figure 2E & Image 1H).

Observations on retractable proboscis

The inward and outward movement of retractable proboscis from the proboscis receptacle was observed on ten live specimens. The time of stretching in and out of the proboscis for each step was also calculated. The total process can be divided into three consecutive steps. First step is the emergence of the proboscis from

Figure 2. Schematic illustrations of *Pallisentis ophiocephali* (Thapar, 1930) Baylis, 1933: A—Anterior region | B—proboscis| C—Male specimen | D—Female specimen | E—Posterior region of female | F—Different types of proboscis hooks | G—Proboscis hook | H—Collar spine | I—Body spine | J—Egg.

proboscis receptacle and the recorded time was 27.3 (27.12–27.42) seconds (Image 2A–E). After emerging, the fully stretched proboscis paused for 32.52 (32.48–32.58) seconds (Image 2F). Lastly, the species took 12.08 (11.90–12.11) seconds for the inward movement, i.e.,

retraction was much faster than eversion. The total time for the completion of the whole process was 71.90 (71.84–72.33) seconds. The repetition of the whole process began after a pause of 19.20 (15.55–22.73) seconds.

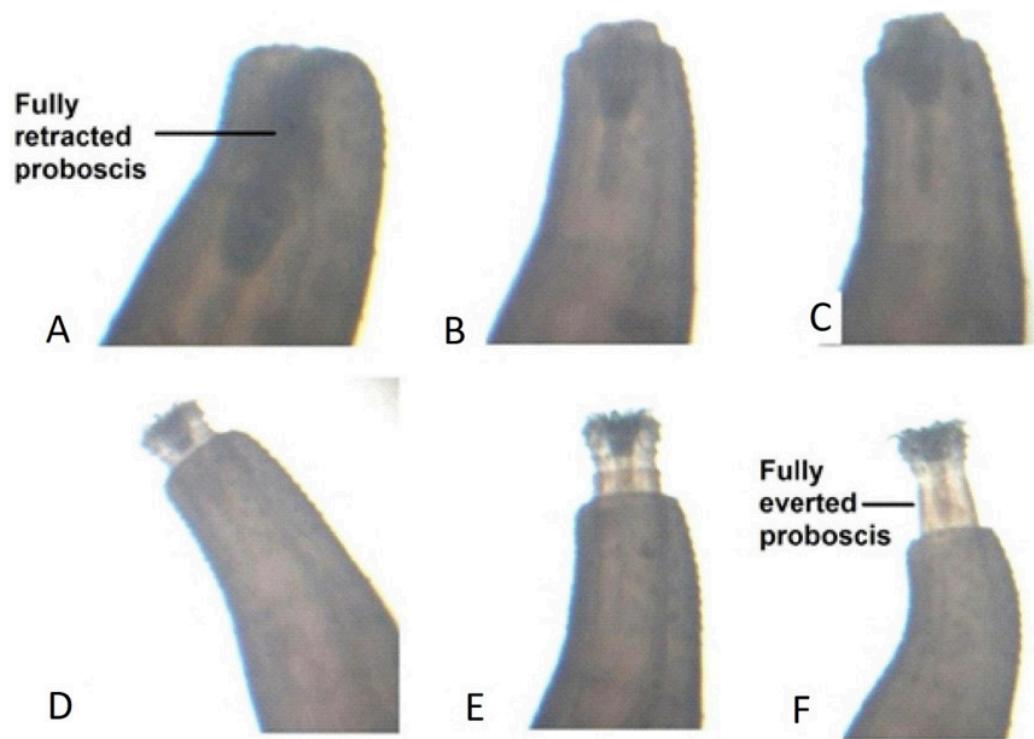


Image 2. Light microscopic pictures of retractable proboscis of *Pallisentis ophiocephali* (Thapar, 1930) Baylis, 1933 in different stages: A—Fully retracted proboscis | B-E—Outward movement of the proboscis | F—Fully stretched proboscis. © Prabir Banerjee.

Type host: *Channa marulius* (Hamilton, 1822).

Other host from different genera: *Nandus nandus* (Hamilton), *Grihiria (Cirrhina) cupla*, *Ompokpabda* (Hamilton), *Xenentodon cancila* (Hamilton), *Rana trigrina* (Daudin).

Other hosts in this study: *Channa punctatus* (Bloch, 1793) and *Channa striatus* (Bloch, 1793).

Distribution: Andhra Pradesh, Uttar Pradesh, Odisha, West Bengal of India.

Site of infection: Mostly in stomach, in few cases in proximal intestine.

Present collection Locality: Chandannagore (22.86 N & 88.36 E), Hooghly, West Bengal.

DISCUSSION

The present species has been collected from the wall of the intestinal tract of *Channa punctatus* and *Channa striatus*. Prevalence of the infection in two host fishes were recorded 26% and 21.2%, respectively. According to Soota & Bhattacharya (1982) and Bhattacharya (2007), members of the genus *Pallisentis* can be differentiated by the shape and size of the proboscis and hooks. The studied specimens are compared with *P. ophiocephali* (Thapar, 1930) Baylis, 1933, *P. colisai*

(Sarkar, 1954) and *P. punctati* (Gupta et al. 2015). Comparing the present specimen with other closely related species, the present acanthocephalan species has been considered as *P. ophiocephali* as described by Thapar (1930) and later Baylis (1933) (Table 1). The species has been reported from Hooghly for the first time. In the description of type species, the geographical distribution was not specifically mentioned. Gupta et al. (2012) mentioned *Channa punctatus* as a host of *P. ophiocephali*. SEM studies reveal the detailed proboscis structure, arrangement of hooks and retractor muscles in the neck region. The scanning electron microscopic pictures also provide the surface structural details with high magnification that facilitates the understanding of the spatial relationships among surface structures and other minute organelle. Hooks and spines are some useful taxonomic tools for differentiating subgenera and species of acanthocephala. Morphometrically identical species generally have been examined and identified with the help of arrangements of hooks and spines. Moreover, some preliminary data has also been recorded from the retractable movements of the proboscis along with the required time span. The inward movement of the proboscis is comparatively faster than the outward movement. Further examinations are required to explore the untouched area of acanthocephalan biology.

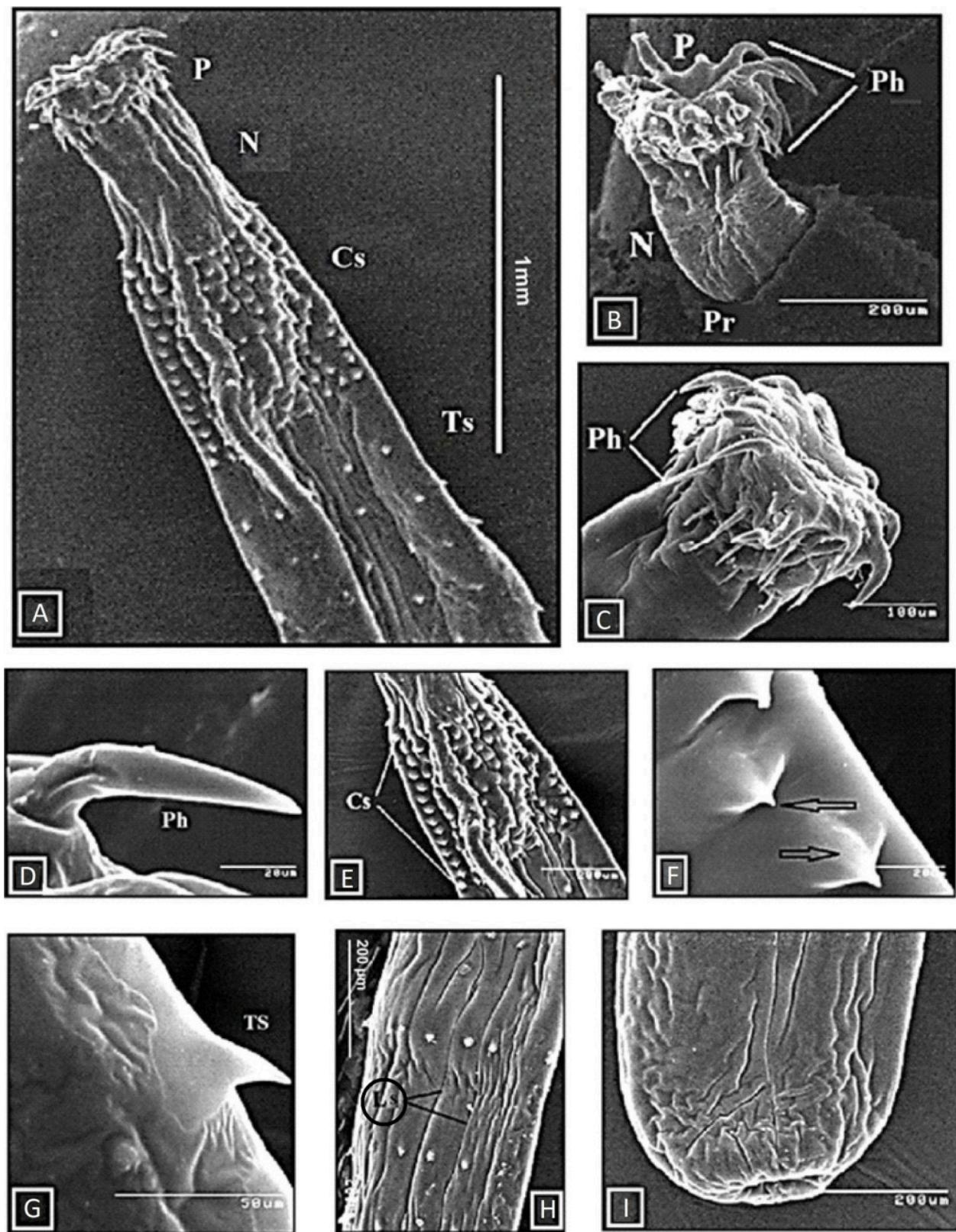


Image 3. Scanning Electron Microscopic pictures of female specimen of *Pallisentis ophiocephali* (Thapar, 1930) Baylis, 1933: A–C—Pictures showing the body with proboscis (P—Proboscis, N—Neck, Cs—Collar spine, Bs—Body spine, Ph—Proboscis hooks, Pr—Proboscis receptacle) | D—One proboscis hook | E–F—Collar spines (↔) shows pointed tip and (→) indicates convex surface | G–H—Trunk spine(Ts—Trunk spine, Ls—Longitudinal striations) | I—Male posterior end (with retracted bursa). © Prabir Banerjee.

Table 1. Morphometric comparison of *Pallisentis ophiocephali* (Thapar, 1930) Baylis (1933) with other closely related species.

	<i>P. ophiocephali</i> (Thapar, 1930) Baylis, (1933) (Present species)	<i>P. ophiocephali</i> (Thapar, 1930) Baylis, (1933) (Type species)	<i>P. colisai</i> (Sarkar 1954)	<i>P. punctati</i> (Gupta et al. 2015)
Host	<i>Channa punctatus</i> , <i>Channa striatus</i>	<i>Channa marulius</i>	<i>Colisa fasciatus</i>	<i>Channa punctatus</i>
Location	Hooghly, West Bengal	Different places of India	Delhi	Bareilly, Uttar Pradesh
Size of body (L x W)	♂ 6.1 (5.9–8.2) x 0.32 (0.28–0.33) ♀ 17.1 (16.7–19.4) x 0.54 (0.52–0.60)	♂ 05.99 x 0.34 ♀ 14.3 x 0.495	♂ 4.13 x 0.39 ♀ 5.4–12.9 x 0.610	♂ (3.015–5.899) x (0.307–0.461) ♀ (5.472–14.791) x (0.461–0.820)
Size of proboscis (L x W)	♂ 0.16 (0.16–0.18) x 0.21 (0.19–0.23) ♀ 0.18 (0.17–0.20) x 0.21 (0.19–0.23)	♂ 0.14 x 0.22 ♀ 0.175 x 0.242	♂ 0.13 x .15 ♀ –	♂ (0.104–0.118) x (0.090–0.120) ♀ (0.126–0.180) x (0.140–0.198)
Length of neck (L x W)	♂ 0.203 (0.19–0.21) x 0.209 (0.207–0.21) ♀ 0.282 (0.280–0.293) x 0.206 (0.202–0.21)	♂ 0.198 x 0.22 ♀ 0.308 x 0.22	♂ 0.26 x 0.17 ♀ –	♂ (0.190–0.255) x (0.108–0.118) ♀ (0.288–0.558) x (0.162–0.273)
Proboscis hooks length H1	♂ 0.065 (0.064–0.067), ♀ 0.079 (0.077–0.080)	0.076–0.085	0.08 x 0.007	♂ 0.057, ♀ 0.073
H2	♂ 0.06 (0.059–0.062), ♀ 0.067 (0.065–0.072)	0.068–0.076	0.07	♂ 0.054, ♀ 0.063
H3	♂ 0.044 (0.042–0.047), ♀ 0.052 (0.048–0.053)	0.051	0.03	♂ 0.021, ♀ 0.025
H4	♂ 0.032 (0.031–0.034), ♀ 0.037 (0.032–0.044)	0.034–0.0425	0.026	♂ 0.018, ♀ 0.018
Lemnisci	1.861 (1.857–1.920)	1.925	2.2 x 0.05	–
No. of collar spines	♂ 13–14 x 16–17 ♀ 14–16 x 16–17	♂ 11–13 x 14–16 ♀ 13–14 x 14–16	♂ 16 x 14–16, ♀ –	♂ 14, ♀ 22
Collar spines length	♂ 0.023 (0.022–0.024) x (0.016–0.018), ♀ 0.027 (0.026–0.03) x 0.023 (0.022–0.025)	–	–	♂ (0.021–0.028) x (0.010–0.014) ♀ (0.025–0.046) x (0.010–0.025)
No. of body spines	♂ 26–29 x 14–15 ♀ 57–60 x 14–15	♂ 28–34, ♀ 60–65	♂ 22 x 12–16, ♀ 67	♂ 12, ♀ 14–18
Body spines length	♂ 0.034 (0.032–0.036) x 0.013 (0.010–0.016) ♀ 0.044 (0.042–0.046) x 0.016 (0.014–0.022)	–	–	♂ (0.021–0.028) x (0.010–0.018) ♀ (0.036–0.057) x (0.014–0.025)
Testis	0.621 (0.616–0.643)	0.605–0.66	(1) 0.39 x 0.17 (2) 0.35 x 0.17	(0.374–0.684) x (0.133–0.216)
Egg	0.053 (0.051–0.062) x 0.022 (0.021–0.033)	0.068 x 0.025	–	(0.028–0.061) x (0.010–0.025)
Ovarian balls	0.107 (0.105–0.113) x 0.051 (0.50–0.054)	–	–	(0.039–0.064) x (0.025–0.054)

REFERENCES

Amin, O.M., R.A. Heckmann, N. Van Ha, P. Van Luc & P.N. Doanh (2000). Revision of the genus *Pallisentis* (Acanthocephala: Quadrigyridae) with the erection of three new subgenera, the description of *Pallisentis (Brevitritospinus) vietnamensis* subgen. et sp. n., a key to species of *Pallisentis*, and the description of a new Quadrigyrid genus, *Pararaosentis* gen. n. *Comparative Parasitology* 67(1): 40–50.

Baylis, H.A. (1933). On some parasitic worms from Java with remarks on the acanthocephalan genus *Pallisentis*. *Annals and Magazine of Natural History* 10(12): 559–573.

Bhattacharya, S.B. (2007). Handbook on Indian Acanthocephala. Zoological Survey of India, Kolkata, pp. 1–255 <https://agris.fao.org/agris-search/search.do?recordID=US201300123591>

Dey, V.K. (1996). Ornamental Fishes and Handbook of Aqua farming. The Marine Products Export Development Authority, Cochin. Entrepreneurship Development. Central Institute of Freshwater Aquaculture, Bhubaneshwar: 1–6

Gupta, N., D.K. Gupta & P. Singhal (2015). Description of *Pallisentis (Brevitritospinus) punctati* n. sp. (Acanthocephala: Quadrigyridae) from *Channapunctatus* in Bareilly, Uttar Pradesh, India. *Iranian Journal of Parasitology* 10(4): 605–616. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724838/>

Gupta, N., P. Singhal & D.K. Gupta (2012). Population dynamics of a parasite *Pallisentis* in two species of fish *Channapunctatus* and *Channastrius*. *Journal of Environmental Biology* 33: 195–199.

Harada, I. (1935). Zur Acanthocephalen fauna von Japan. Memoirs of the Faculty of Science and Agriculture, Taihoku Imperial University 14: 7–23.

Jayaram, K.C. (1999). The freshwater fishes of the Indian region. Narendra Publishing House, New Delhi, India, pp 1–551

Sarkar, H.L. (1954). On a new acanthocephalan *Pallisentis colisai*, from the fish *Oalisajasciatus* (Bloch & Schn.) with a note on *Acanthogyrus acanthogyrus* Thapar, from the fish *Labeorohita* (Hamilton) *Records of the Indian Museum* 52: 349–362

Soota, T.D. (1980). Collection and preservation of trematodes and cestodes. *Proceedings of the Workshop on Techniques in Parasitology Zoological Survey of India*, pp 27–29

Soota, T.D., & S.B. Bhattacharya (1982). On the validity of the species of the genus *Pallisentis* Van Cleave, 1928(Acanthocephala: Pallisentidae) from the Indian subcontinent. *Records of the Zoological Survey of India* 80: 157–167.

Talwar, P.K. & A.G. Jhingran (1991). Inland fishes of India and adjacent countries. Vol. 1 & 2. Oxford & IBH Publishing Co. Pvt. Ltd. New Delhi, 1–1158

Thapar, G.S. (1930). On *Farzandia*, a new genus of Acanthocephalid worms, from the intestine of *Ophiocephalusmarulius*. *Annals and*

Magazine of Natural History 10(9): 76–8.

Van Cleave, H.J. (1920). Notes on life-cycle of two species of Acanthocephala from fresh water fishes. *Journal of Parasitology* 6(4): 167–172.

Van Cleave, H.J. (1928). Two new genera and species of Acanthocephala from fishes of India. *Records of the Indian Museum* 30(2):147–149.

Yamaguti, S. (1963). Systema Helminthum. Vol. 5: Acanthocephala. Interscience Publish. New York, London, 423 pp.

Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lionel Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarsanan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarsanan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rivonker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2019–2021

Due to paucity of space, the list of reviewers for 2018–2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:

The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
43/2 Varadarajulu Nagar, 5th Street West, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Article

Documenting butterflies with the help of citizen science in Darjeeling-Sikkim Himalaya, India

– Aditya Pradhan, Rohit George & Sailendra Dewan, Pp. 22771–22790

Communications

Determinants of diet selection by Blackbuck *Antilope cervicapra* at Point Calimere, southern India: quality also matters

– Selvarasu Sathishkumar, Subhasish Arandhara & Nagarajan Baskaran, Pp. 22791–22802

An update on the conservation status of Tibetan Argali *Ovis ammon hodgsoni* (Mammalia: Bovidae) in India

– Munib Khanyari, Rigzen Dorjay, Sherab Lobzang, Karma Sonam & Kulbhushansingh Ramesh Suryawanshi, Pp. 22803–22812

An annotated checklist of the avifauna of Karangadu mangrove forest, Ramanathapuram, Tamil Nadu, with notes on the site's importance for waterbird conservation

– H. Byju, N. Raveendran, S. Ravichandran & R. Kishore, Pp. 22813–22822

Habitats and nesting habits of Streaked Weaver *Ploceus manyar* in select wetlands in the northern districts of Tamil Nadu, India

– M. Pandian, Pp. 22823–22833

Genetic evidence on the occurrence of *Channa harcourtbutleri* (Annandale, 1918) in Eastern Ghats, India: first report from mainland India

– Boni Amin Laskar, Harikumar Adimala, Shantanu Kundu, Deepa Jaiswal & Kailash Chandra, Pp. 22834–22840

Redefining *Pallisentis ophiocephali* (Thapar, 1930) Baylis, 1933 from two freshwater fishes of Channidae family of Hooghly District, West Bengal, India

– Prabir Banerjee & Biplob Kumar Modak, Pp. 22841–22849

A new termite species of the genus *Bulbitermes* (Blattodea: Isoptera: Termitidae) from Meghalaya, India

– Khirod Sankar Das & Sudipta Choudhury, Pp. 22850–22858

First report of the beetle *Henosepilachna nana* (Kapur, 1950) (Coleoptera: Coccinellidae) from Maharashtra with special reference to molecular phylogeny and host plants

– Priyanka B. Patil & Sunil M. Gaikwad, Pp. 22859–22865

Assessment of population, habitat, and threats to *Cycas pectinata* Buch.-Ham. (Cycadaceae), a vulnerable cycad in Bhutan

– Sonam Tobgay, Tenjur Wangdi, Karma Wangchuck, Jamyang Dolkar & Tshering Nidup, Pp. 22866–22873

Ecological niche modeling to find potential habitats of *Vanda thwaitesii*, a notified endangered orchid of Western Ghats, India

– S. William Decruse, Pp. 22874–22882

Occurrence of opportunistic invasive macroalgal genus *Caulerpa* and *Halimeda opuntia* in coral reefs of Gulf of Mannar

– Chatragadda Ramesh, Koushik Sadhukhan, T. Shunmugaraj & M.V. Ramana Murthy, Pp. 22883–22888

Short Communications

Diversity of bees in two crops in an agroforestry ecosystem in Kangsabati South Forest Division, Purulia, West Bengal, India

– Pallabi Das & V.P. Uniyal, Pp. 22889–22893

An extended distribution and rediscovery of *Rhynchosia suaveolens* (L.f.) DC. (Fabaceae) for Maharashtra, India

– Ajay K. Mishra, Vedhika Gupta, Ajay V. Rajurkar, Pankaj A. Dhole & Vijay V. Wagh, Pp. 22894–22899

Notes

New distribution records of two uncommon microhylid frogs, *Melanobatrachus indicus* Beddome, 1878 and *Mysticellus franki* Garg & Biju, 2019 from Nelliampathy, Kerala, India

– Madhura Agashe, Avraajal Ghosh, K. Dilshad, Maitreya Sil & Aniruddha Datta-Roy, Pp. 22900–22904

First record of Brilliant Flash *Rapala melida nicevillei* (Swinhoe, 1911) (Lepidoptera: Lycaenidae: Theclinae) to Meghalaya, India

– Suman Bhowmik, Atanu Bose, Jayant Ghanshyam Bhoir, Atanu Bora, Suraj Das, Shyamal Kumar Laha & Ngangom Aomoa, Pp. 22905–22907

A note on the occurrence of *Cremnochonchus conicus* (Blanford, 1870) in Mumbai, India

– Naman Kaji & Shubham Yadav, Pp. 22908–22910

Jasminum angustifolium (L.) Willd. var. *angustifolium* (Oleaceae): a new distribution record for West Bengal, India

– Keya Modak & Monoranjan Chowdhury, Pp. 22911–22915

Cyrtosia falconeri (Hook.f.) Aver. (Orchidaceae): an addition to the flora of Jammu & Kashmir, India

– Mushtaq Ahmed & Manjul Dhiman, Pp. 22916–22919

New distribution record of *Roridomyces cf. phyllostachydis* (Agaricales: Mycenaceae), a bioluminescent fungus from Namdapha National Park, Arunachal Pradesh, India

– Arijit Dutta, Sourav Gupta, Jayanta K. Roy & M. Firoz Ahmed, Pp. 22920–22923

Photographic evidence of bioluminescent mushroom *Mycena chlorophos* (Mycenaceae) from Goa, India

– Swanand R. Patil, Mirjoy M. Mathew, Abhijeet V. Patil, Ramesh N. Zarmekar, Pankaj R. Lad & Grenville Dcosta, Pp. 22924–22926

Publisher & Host

