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Environmental DNA as a tool for biodiversity monitoring in 
aquatic ecosystems – a review
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Abstract: The monitoring of changes in aquatic ecosystems due to anthropogenic activities is of utmost importance to ensure the health 
of aquatic biodiversity. Eutrophication in water bodies due to anthropogenic disturbances serves as one of the major sources of nutrient 
efflux and consequently changes the biological productivity and community structure of these ecosystems. Habitat destruction and 
overexploitation of natural resources are other sources that impact the equilibrium of aquatic systems. Environmental DNA (eDNA) is 
a tool that can help to assess and monitor aquatic biodiversity. There has been a considerable outpour of research in this area in the 
recent past, particularly concerning conservation and biodiversity management. This review focuses on the application of eDNA for the 
detection and relative quantification of threatened, endangered, invasive and elusive species. We give a special emphasis on how this 
technique developed in the past few years to become a tool for understanding the impact of spatial-temporal changes on ecosystems. 
Incorporating eDNA based biomonitoring with advances in sequencing technologies and computational abilities had an immense role in 
the development of different avenues of application of this tool.
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Tamil:  !r#$யலைமp*க,l மா/ட ெசய3பா5களாl ஏ3ப5m மா3றŋகைளk க<கா=tதl, !rவாA பlBCr இனŋக,F நlவாAைவ உIJ ெசyதl 
LகµkNயm. மா/ட இைடOIகளாl !rPைலகll RrnTேபாதl, !r#ழlக,l ஊXடcசtT ெவ,ேய3றtJ3Z µkNய கார=யாக ெசயl ப5வTடF, அதF 
]ைளவாக உC^யl உ3பtJtJறF ம3Im பlBCr ச_கkகXடைமpைப மா3INறT. வாA]ட அ$p* ம3Im இய3ைக வளŋக,F அள` கடnத aர<டl 
ஆNயன !rம<டலŋக,F சமPைலைய எJrமைறயாக தாkZm _லŋகll ஆZm. #ழl மரபd எFபT, !rவாA பlBCrகைள மJpπட`m,க<கா=kக`m 
உத`m ஒg µைற. இnத ஆy` களtJl, Zhpபாக பlBCr பாTகாp* ம3Im ேமலா<ைம Zhtத பZJக,l, அ<ைம காலŋக,l க=சமான அள]l ஆy`கll 
நடnT வgNFறன. இnத மJpபாy`ைர, அ$]F ],mπl இgkZm அcaItதpபXட ம3Im அgNவgm உC^னŋகll, க<டhய கiனமான ம3Im ஆkNரLp* 
உC^னŋகll ஆNயவ3ைற, க<டhதl ம3Im ஒpπX5 அள]5தjl #ழl மரபd]F பயFபா5கll ZhtT கவனm ெசBtTNறT. a3Ic#ழl ம<டலŋக,l 
பரp*-காலm சாrnத மா3றŋக,F தாkகŋகைளp *^nT ெகாllள ஒg வ$µைறயாக மாற, கடnத kல ஆ<5க,l இnத νXபm எvவாI ேமmபX5llளT எFபத3Z 
நாŋகll ஒg kறp* µkNயtTவm ெகா5tJgkNேறாm. மரபd வரFµைறCடl νXபŋகll ம3Im கணkoX5tJறFக,l ஏ3பX5llள µFேன3றŋகைள #ழl 
மரபd சாrnத பlBCr க<கா=tதBடF ஒgŋNைணtதT, இvவ$µைறCF பFµகp பயFபா5கைள ேமmப5tTவJl மாெபgm பŋகா3hpllளT. 
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INTRODUCTION

Earth is an abode of numerous living organisms 
which exist in varying environmental conditions and 
all are ultimately interconnected. Major unknowns in 
estimating global biodiversity are: how many species 
inhabit Earth, and what is their rate of extinction. Only a 
fraction of total biodiversity is known, and a substantial 
number of species that have not yet been accounted 
for and are vanishing without our knowledge. Since all 
species are dependent on each other in some way or 
another, the removal of one drastically affects other 
species. Unravelling each point in this network of life is 
important to study how an ecosystem at large functions 
and also to understand the life history of a species and 
how new communities get established.

Aquatic ecosystems comprising freshwater, brackish, 
and marine water in nature are the sources of a lot of 
species diversity ranging from microbes to mammals. 
The impact of human activities on these life forms is 
multifactorial. An increase in the emission of carbon 
from anthropogenic actions is leading to an increase in 
water temperature, acidification and oxygen deprivation 
of aquatic systems (Jiao et al. 2015). The changes in the 
abiotic parameters of the ecosystem is accompanied 
with impacting the cycling and efflux of nutrients. These 
changes in turn regulates the geographic distribution 
of the life forms  in that habitat (Nazari-Sharabian 
et al. 2018).  According to the special report of IPCC  
(The Intergovernmental Panel on Climate Change) 
on changing ocean and cryosphere 2019, by the year 
2100, the ocean will witness an increase in temperature 
by 2 to 4 times and oxygen levels will decline further 
resulting in increase in the volume of oxygen-deficient 
zones (OMZ). These changes will impact ecosystem 
services with a projected decrease in fish catch 
potential and global marine biomass, which will further 
impact revenue generation, food security and threaten 
livelihood. Analysing the world’s biodiversity becomes 
a critical aspect of learning about the distribution of 
these “biodiversity hotspots” and applying conservation 
practices to protect these areas.

The traditional practices of estimating biodiversity 
are biased towards the sampling of particular species 
(Gunzburger 2007) or can also pose a risk to sensitive 
organisms. In recent times, molecular techniques are 
gaining importance in the estimation of biodiversity and 
its conservation in the world. One such molecular tool 
is the study of environmental DNA (eDNA), which has 
tremendous potential to develop our understanding 
of biodiversity science and provide implications for 

conservation practices with census data of species 
present at a comprehensive scale in real-time. 

What is environmental DNA?
The term ‘environmental DNA’ (eDNA) was 

introduced in the field of microbiology for the detection 
of microbial communities in sediments by Ogram et al. 
(1987).  eDNA has been classified based on particulate 
size: aggregates of eDNA greater than 0.2 µm were 
termed as particulate DNA (P-DNA) while eDNA less 
than 0.2 µm is termed as dissolved DNA (D-DNA) by 
(Paul et al. 1987). DNA extracted non-invasively from 
environmental sources like soil, air, or water is termed 
environmental DNA (eDNA). It has a polydisperse 
nature, i.e., the origin of eDNA can have several sources 
like sloughed cells, faecal matter, spores, slimy coating 
(in amphibians), or dead carcasses. Based on the source 
of origin of eDNA, it undergoes selective decay and thus 
complicates the evaluation of decay rates (Wilcox et al. 
2015). eDNA has been used in the aquatic system to 
either detect the presence or absence of a species or 
for quantitative estimation of a particular species. Its 
application varies between lotic and lentic ecosystems 
as their nature varies. The lotic ecosystem is flowing and 
can transport eDNA directionally downstream from the 
correct location of the target organism, whereas the 
lentic ecosystem is stagnant. eDNA is released into the 
environment and subsequently undergoes progressive 
decay due to many biotic and abiotic factors. 

Factors governing the concentration of EDNA in 
the aquatic environment:

Based on the literature review, it has been perceived 
that there can be numerous factors that can govern the 
concentration of eDNA at a particular time and space, 
but can be primarily divided into three categories:

1) eDNA released by the organism 
2) Persistence of eDNA in different environmental 

conditions
3) Capture protocols for eDNA and sensitivity of 

detection assay

eDNA release by the organism
The concentration of eDNA released by an organism 

and the degradation rate of DNA in a particular 
environment are the two attributes on which the 
concentration of eDNA varies on a given spatial-temporal 
scale. The release of eDNA is a complex interaction 
between environmental conditions, the natural history of 
an organism, its metabolic rate, and the developmental 
stage. With an increase in the temperature of the water, 
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the mobility of fish has been reported to increase (Petty 
et al. 2012)  hence the metabolic rate also increases 
(Xu et al. 2010) until a physiological limit of tolerance 
is attained. The timing of sample collection plays a vital 
role because it can help in capturing the presence of 
the migratory species based on its natural history or 
seasonal variability in levels of resident species (Lesley 
et al. 2016). It has been found that with different 
developmental stages, eDNA released also varied. eDNA 

release rate per fish body weight is slightly more in the 
juvenile group when compared to that of an adult group 
due to factors related to ontogeny. But, the rate of 
eDNA release per individual is more from adult fish than 
juveniles because of the larger body size of adult fish 
(Maruyama et al. 2014). Hence, it is difficult to infer if 
the source of eDNA is from a higher number of juveniles 
or a lesser number of adults.

Table 1. Few key studies on the applications of eDNA as a tool.

Study details References

A) Detection of species:

1) Detection of alien invasive species Procambarus clarkii (crayfish) in water from the natural pond and artificial 
aquarium (Geerts et al. 2018)

2) Detection of a threatened species Glyptemys insculpta (wood turtle) using qPCR by designing species-specific 
primers and Taq man probe (Lacoursière-Roussel et al. 2016c)

3) Detection of endangered Shasta crayfish (Pacifastacus fortis) and invasive crayfish (Pacifastacus leniusculus) in 
river water (Cowart et al. 2018)

4) Comparing the sensitivity of detection of alien invasive species- American bullfrog (Lithobates catesbeianus) (Dejean et al. 2012)

5) Detection of invasive species, African jewelfish (Hemichromis letourneuxi) and determine the lower limit of 
detection and effect of fish density and time on detection in an artificial aquarium (Díaz-Ferguson et al. 2014)

6) Detection of invasive species, New Zealand mud snails (Potamopyrgus antipodarum) and to find the time till 
which eDNA remains detectable in the aquatic system (Pilliod et al. 2013a)

7) Detection of invasive submerged aquatic plant, Egeria densa in pond water (Fujiwara et al. 2016)

8) Differentiating between endemic species, Japanese giant salamander (Andrias japonicum) and exotic species, 
Chinese giant salamander (Andrias davidianus) using eDNA (Fukumoto et al. 2015)

9)
eDNA detection rate has a positive relationship with flow volume in waterways and has a more pronounced 
effect on eDNA detection probability than other co-variates like temperature, dissolved oxygen concentration, 
pH

(Song et al. 2017)

10) Detection of transient pelagic marine fish, Chilean devil ray (Mobula tarapacana) (Gargan et al. 2017)

B) Estimation of biomass/abundance: 

1) Effect of water temperature and eDNA capture method on altering the relationship between eDNA concentration 
and fish biomass of economically important salmonid, Brook Charr (Salvelinus fontinalis) (Lacoursière-Roussel et al. 2016b)

2) Killer whale (Orcinus orca) eDNA quantification using ddPCR from seawater (Baker et al. 2018)

3) Estimation of transport distance of eDNA of brown trout (Salmo trutta, L.) using a dual-labelled probe for relative 
quantification (Deutschmann et al. 2019)

4) Comparison of detection probability, density, biomass and occupancy with traditional methods of sampling of 
Rocky Mountain tailed frog (Ascaphus montanus) and Idaho giant salamander (Dicamptodon aterrimus) (Pilliod et al. 2013b) 

5)
Salmon DNA was measured from water samples during the spawning season using species-specific quantitative 
PCR probes and factors affecting the correlation between eDNA concentration and biomass of these fishes were 
also studied. 

(Tillotson et al. 2018)

C) Studying the communities in the ecosystem

1)

The direct impact of an anthropogenic activity like an oil spill on the coastal marine ecosystem was observed. 
The succession of communities after the event was monitored which included bacteria, metazoans and protists. 
Certain communities were found to be resistant to the effect of this incidence whereas few others were 
conferred with the sensitivity to this. 

(Xie et al. 2018)

2)

The community-level response in cyanobacteria, diatoms and microbial eukaryotes were correlated to 
physicochemical parameters of Lake Constance like rising phosphorus and air temperature. Major environmental 
perturbations like eutrophication during the 20th century were found to align with the reversion of resilience 
demonstrated by the communities.  

(Elberri et al. 2020)

3)
The change in community structure of bacterial, protistan, and metazoan communities in response to pollution 
status of the river using eDNA metabarcoding. The varying level of nutrients in the ecosystem was shown to be 
the main driving factor in the relative abundance of OTUs and community structure.

(Li et al. 2018)

4) 
The spatial distribution of bacterial communities was studied using metabarcoding. The change in the richness 
of these communities and the abundance was shown to be a measure of the degree of anthropogenic 
contamination and can be an area to focus on for biomonitoring of coastal ecosystems.

(Garlapati et al. 2021)

5) The study focuses on identifying the association between the fish assemblages in the ecosystem and invasive 
species and how these get affected by environmental co-variates and human-induced disturbance. (Pukk et al. 2021)
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Persistence of eDNA in different environmental 
conditions

DNA has limited chemical stability (Lindahl 1993) and 
once it is shed into the environment, it can either persist 
in free form or get adsorbed to organic or inorganic 
matter or else get sedimented or degraded (Dejean 
et al. 2011). The persistence of eDNA depends on 
factors which are divided into three categories - abiotic 
(temperature, salinity, pH, oxygen, & light), biotic 
(extracellular enzyme & microbial community), and DNA 
characteristics (length, conformation, & membrane-
bound) reviewed by Barnes et al. (2014).

Capture protocols for eDNA and sensitivity of the assay
Most efficient capture protocols are a combination 

of a selection of the most appropriate filter materials 
which allows filtering the maximum amount of water 
using powerful automatic motors along with optimized 
isolation protocols and preservation techniques to 
maximize the yield of eDNA. The pore size of the filter 
is also an important feature that decides which source 
of DNA shall be enriched- gametes, sloughed cells free 
DNA, etc, and also the target group of organisms. If 
microorganisms are the target, then very low pore size 
filters will capture most of them.  Renshaw et al. 2015  
found that there was no significant difference in copy 
number in the case of 0.8 µm cellulose nitrate (CN) filter 
or 0.8 µm polyether sulphone (PES) filters. In contrast to 
this, (Hinlo et al. 2017) and (Liang & Keeley 2013) found 
a CN filter to have a significant difference in DNA yield. 
This difference could be due to a different combination 
of isolation and preservation protocol. 

Precipitation and filtration are the two methods that 
have been used to extract eDNA from water samples. 
Precipitation is generally used for smaller volumes by 
using salt and ethanol to precipitate extracellular DNA by 
using centrifugal forces (Maniatis et al. 1982). Filtration 
is more size-dependent and is based on the property of 
filter material to keep eDNA. Filtration had shown more 
yield of eDNA in combination with isolation protocols 
for DNA (Deiner et al. 2015). DNA isolation: three 
protocols generally have been used to extract DNA from 
filters, namely the phenol chloroform Isoamyl alcohol 
method (PCI), Qiagen’s DNeasy® blood and tissue kit, 
and MoBio’sPowerwater® DNA isolation kit. PCI method 
has been shown to yield more targeted DNA compared 
to Qiagen’s DNeasy® blood and tissue kit using a 0.45 
µm CN filter.  While MoBio’sPowerWater® DNA isolation 
kit has shown more yield than the PCI method using a 
1.5 µm glass membrane filter (GMF) (Renshaw et al. 
2015). However, filtration along with Qiagen’s DNeasy 

® blood and tissue kit has shown a higher diversity of 
eukaryotes being detected compared to that of limited 
species being detected in the case of the PCI method 
with filtration (Deiner et al. 2015). We believe that 
skipping the use of lysis buffer during isolation of eDNA 
from filter membranes will help in reduction of the 
microbial eDNA part as it will limit the lysis of microbial 
cell. This method will help in studying the non-microbial 
or eukaryotic taxa. The flow rate through filters had 
also been seen as a crucial step, as eDNA might start 
the process of degradation if the filtration time is too 
much. Hence, filters with higher flow rates have been 
preferred (Hinlo et al. 2017).

Preservation of DNA and storage is also a very crucial 
step in the case of detection of very low abundant 
species or quantification of the abundance of any 
species, as even a slight degradation in copy numbers 
might give faulty results. Freezing of filters at a very 
low temperature cannot always be workable in field 
conditions hence 95% ethanol (Minamoto et al. 2015), 
Longmire buffer (Renshaw et al. 2015; Williams et al. 
2016), and CTAB (Renshaw et al. 2015) has been shown as 
alternatives. It was found that both the Longmire buffer 
and CTAB preserved filtered eDNA for over two weeks 
at 20˚C but at 45˚C Longmire, buffer outperformed CTAB 
buffer (Renshaw et al. 2015). Enhanced CTAB buffer has 
shown to have better inhibitor removal activity while 
Longmire buffer has the property to preserve eDNA for 
a longer time (Hunter et al. 2019). It is recommended to 
choose the best preservation buffer according to one’s 
requirement by conducting a pilot experiment.   

PCR inhibitors can be responsible for incorrect 
estimation of abundance or failure in the detection of 
very low copy number species. These inhibitors can 
either be co-extracted along with the extraction of 
eDNA or during isolation protocols. These inhibitors, like 
phenol and proteinase K, are removed by adding BSA to 
the PCR master mix (Deiner et al. 2015). These inhibitors 
might also be removed using inhibitor removal columns 
available in some commercial kits (McKee et al. 2015). 

The specificity of primer and sensitivity of PCR 
is crucial. Nested PCR has been shown to improve 
detection compared with conventional PCR (Jackson 
et al. 2017). Detection rates of eDNA are greater with  
digital droplet PCR (ddPCR) than real-time PCR (qPCR) 
at lower concentrations (Doi et al. 2015). Quantitative 
estimation of biomass was shown to be more accurate 
by using ddPCR than qPCR. ddPCR was suitable for 
measurement of the natural sample as inhibitory 
substances have little effect on DNA quantification, 
as endpoint PCR amplification in each droplet can be 
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detected independent of amplification efficiency in 
ddPCR (Doi et al. 2015). There have been reports that 
base pair mismatches in the primer have more impact 
than that of the probe and the location of the mismatch 
also plays an important role. Base pair mismatch near 
the 3’ end has shown a larger impact on specificity than 
in the 5’ end or any other region (Wilcox et al. 2013).  

Applications of eDNA as a tool in conservation and 
biodiversity monitoring

From deciphering single species to documenting 
entire communities, our understanding of eDNA study 
has progressed over the years. There is a multitude of 
applications of eDNA ranging from detection of invasive 
species, elusive species or any other ecologically 
important or threatened species to unravelling 
community dynamics and their response to changing 
spatial-temporal changes. This has paved new avenues 
in ecosystem management. In the case of microbes, 
less than two per cent of the total are culturable (Wade 
2002). This necessitates the implementation of culture-
independent methods for understanding their genomic 
and functional aspects . The eDNA technique has found 
a host of new applications over several years in the field 
of ecosystem monitoring and management. 

1) Detection of species
Its advent revolved around the uncovering of single 

species like the detection of invasive species, Crayfish 
Procambarus clarkia (Geerts et al. 2018), endangered 
or vulnerable species, Wood Turtle Glyptemys 
insculpta (Lacoursière-Roussel et al. 2016c), or some 
elusive species, Oriental Weather Loach Misgurnus 
anguillicaudatus (Hinlo et al. 2017). A brief methodology 
for the detection of species from environmental aquatic 
samples using the eDNA method has been depicted 
in Image 1. eDNA technology along with occupancy 
modelling has been utilised for monitoring the 
presence of endangered species of Northern Tidewater 
Goby species Eucyclogobius newberryi and Southern 
Tidewater Goby species Eucyclogobius kristinae across 
the entire coast of 1,350 km (Sutter & Kinziger 2019). 
They found that eDNA technology showed double the 
rate of detection compared to the seining method, 
which resulted in improved site occupancy estimates 
as Northern Tidewater Goby was detected at two 
sites where their presence was never known before. 
A positive correlation was observed between eDNA 
concentration and catch per unit effort (CPUE). The 
implication of such objectives paves the path towards 
improved conservation goals. A list of key studies, along 
with the primers used in the detection and monitoring 

of different species, is summarised in Table 2.
2) Population genetics studies 
Population genetics has been a significant aspect 

in the study of ecology as it gives information about 
evolutionary history. But, research in this sector with 
the use of eDNA has just begun and is in its initial stage. 
Sampling in the case of population genetics has been 
a major challenge, especially in threatened organisms. 
eDNA approach helps to mitigate such challenges 
and helps in the study of organisms that are difficult 
to sample.  Researchers  have used eDNA that was 
extracted from sea water  to examine the haplotype 
frequencies and genetic diversity at population level 
in Whale Shark Rhincodon typus (Sigsgaard et al. 
2017). They used high throughput sequencing of two 
mitochondrial control region sequences and compared 
it with tissue samples from 61 individuals at the same 
locality from when samples for eDNA were collected. It 
was found that relative frequencies in both were similar. 
The more current study of elusive Harbour Porpoise 
Phocoena phocoena used high throughput sequencing 
for studying haplotype diversity and found eight unique 
mitochondrial DNA sequences from seawater sampling 
(Parsons et al. 2018). In another study, species and 
ecotypes of Killer Whales (Orcinus orca were identified 
following encounters using digital droplet PCR and 
subsequently were sequenced. It was identified that 
the killer whale encounter was from a southern resident 
community (Baker et al. 2018).  In a more recent study 
by Stepien et al. (2019), Silver Carp Hypophthalmichthys 
molitrix which is an invasive species in the U.S was 
studied for its introduction and spread using eDNA and 
mitochondrial markers targeting cytochrome b and c 
oxidase and nuclear DNA microsatellite markers.  

3) Estimation of relative abundance 
The scope of eDNA is more than just detecting 

the presence/absence of an organism. Estimation of 
copy number or biomass has been the major focus 
and extrapolation of avenues in which an eDNA study 
can be helpful. The information about an organism’s 
relative abundance in the spatial-temporal scale helps 
to document the seasonal variations due to its response 
to the environment or due to other external forces 
like inter or intra-species competition. Estimation of 
abundance can have economic value in aquaculture if 
yield in a particular season can be known beforehand 
by studying the history of a few years about its seasonal 
variations. Even though numerous factors play a role 
in the persistence of eDNA in the environment along 
with its polydisperse nature, as discussed in the earlier 
section, if all protocols related to filtrations, isolation, 
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and preservation are followed the same way for all 
samples across all seasons, then it can give an insight 
of its relative abundance. eDNA concentration of 
Lake Trout Salvelinus namaycush was estimated in 12 
natural lakes and its abundance was compared to that 
of standardized gill net catches (catch per unit effort 
-CPUE and Biomass per unit effort- BPUE (Lacoursière-
Roussel et al. 2016a) . Another study showed that the 
eDNA released from the target organism is a measure 
of its biomass for which laboratory and field-based 
experiments were conducted on Common Carp. This 
highlighted that the concentration of eDNA positively 
correlated to its biomass and can serve to understand 
its distribution in natural systems (Takahara et al. 2013). 

An endangered amphidromous fish, Ryukyu ayu 
Plecoglossus altivelis ryukyuensis, was monitored to 
estimate abundance using qPCR with specific primers to 

amplify the mtDNA ND4 region. The visual snorkelling 
surveys by individually fish counting positively 
correlated to eDNA copies/ml (Akamatsu et al. 2020). 
In another recent study by (Capo et al. 2019), digital 
droplet PCR was used to detect as well as quantify 
Brown Trout Salmo trutta and Arctic Char Salvelinus 
alpinus populations. While they compared between 
fish population estimated by conventional Catch per 
unit effort (CPUE) from gill netting method and eDNA 
concentration from digital droplet PCR, no significant 
correlation could be deduced, yet this paves a promising 
path for future research in this aspect by focussing on 
challenges and limitations which need to be overcome. 
This study also focuses on probable problems of stand-
alone methods and how a congregation of various 
approaches, together with optimised protocols, can 
yield the desired result. In another method of individual 

Image 1. Illustrative representation of methodology of the detection of the different species residing in an aquatic ecosystem. The collected 
environmental sample (water) can be syringe-filtered using membrane filters of desired pore size and material type, followed by amplification 
using PCR to detect the target species. In the case of metabarcoding based approaches, the entire biodiversity of the ecosystem can be 
deciphered. A repetitive sampling at the same site can give an idea about the quantitative change in biodiversity due to seasonal variations, 
anthropogenic disturbances, or some other abiotic attribute. As the abundance of a particular species varies, the same will be reflected in the 
copy number of eDNA which can give an understanding of how population dynamics are controlled by multiple factors. (Illustration created 
with BioRender.com)
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estimation in a population, a novel NGS based strategy 
was used which counted haplotypes in the mitochondrial 
D-loop sequence of eel. This method was named HaCeD-
Seq and it was claimed to be better and more accurate 
in quantification than conventional qPCR. However, its 
accuracy decreased when the number of individuals 
increased because of lesser unique haplotypes and more 
overlap of sequence among individuals (Yoshitake et al. 
2019). A much deeper understanding of factors affecting 
the abundance of eDNA copies in natural environments 
can help to boost this technology and can be of extreme 
importance, especially in fisheries management and has 
direct implications on increasing its economic value.

Though there are substantial volumes of research 
in this field of eDNA our understanding is still limited. 
There have been enormous volumes of reports 
concerning the release and persistence of eDNA in 
various environments, but there has been no noticeable 
research on the effect of stressed environments like 
human activities or predation pressure on the release 

rate of eDNA and how it brings changes in our overall 
understanding of species abundance.

4) Studying the communities in the ecosystem: 
Holistic study of ecosystem and metabarcoding gives 

more inferential insights and hence an upheaval in the 
use of eDNA has led to transitioning from DNA barcoding 
to metabarcoding, hence from studying single species 
to communities and their interactions. This in turn has 
enabled extracting more information and data using less 
time and manpower under field conditions.

Understanding ecosystem health in aquatic bodies
In the last few years, a new paradigm has got an 

increasing focus that aids in the understanding of the 
health of ecosystems using metabarcoding. This can be 
accomplished by establishing the link between changing 
abiotic factors and the ecology of the ecosystem to that 
of changing biotic interactions among communities 
inferred from metabarcoding data. Eutrophication is 
a process of enrichment of nutrients like nitrogen and 

Image 2. The change in physicochemical parameters of the waterbody can be due to either seasonal variations or due to anthropogenic 
disturbances like the building of dams and reservoirs, sediment transport due to erosion of topsoil or eutrophication of nutrients from 
industrial and agricultural outflow which lead to subsequent climate change. These changes in physicochemical factors can be monitored 
along with the changes in species found in the ecosystem using eDNA metabarcoding. Continuous monitoring over all the seasons at a spatial 
scale might offer a link among these changes in biotic and abiotic components of an ecosystem and hence help in future restoration processes. 
(Illustration created with BioRender.com)
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phosphorus (Conley et al. 2009) in water bodies. Although 
natural eutrophication occurs at a very slow pace due to 
the ageing of water bodies (Carpenter 1981), in the past 
century cultural eutrophication due to anthropogenic 
actions has led to rapid nutrient efflux into the water 
bodies (Smith 1998). Eutrophication is one of the major 
indicators of anthropogenic means of changing the 
physicochemical parameters of aquatic bodies along 
with the construction of dams, channelisation and 
sediment transport as depicted in Image. 2 (Bianchi 
& Morrison 2018). This can change the biological 
productivity and community structure composition of 
the water bodies (Sawyer 1966). There are manifold 
effects of eutrophication, algal blooms being the 
most noticeable of them. The change in Nitrogen (N): 
Phosphorus (P) ratio or dissolved organic carbon (DOC): 
dissolved organic nitrogen (DON) has been found as a 
variable in case of such blooms (Anderson et al. 2002). 
The major component of these blooms is Cyanobacteria 
and they produce cyanotoxins which act as neurotoxins 
and hepatotoxins for fishes, mammals and also humans 
(Oberemm et al. 1999; Carmichael 2001). Literature 
search shows that though there are some studies in 
this area using metabarcoding to find the community 
structure of bacteria and planktons (Wan et al. 2017; 
Banerji et al. 2018) in aquatic systems, we find very few 
studies relating how anthropogenic disturbances might 
affect the ecosystem services.

One such study by (Craine et al. 2017), showed 
the relation among the changing environmental 
variables like dissolved nutrient concentration with 
four taxonomic groups namely bacteria, phytoplankton, 
invertebrates, and vertebrates. Further, they found that 
increasing eutrophication of nutrients and river size 
were the crucial variables that changed the abundances 
of these broad taxa. Clark et al. (2020) demonstrated 
the impact of enrichment with fertilizers on the benthic 
communities in two estuaries that differed in its 
environmental attributes.  The effect was studied using 
eDNA metabarcoding on bacterial (16sRNA), eukaryotic 
(18sRNA) and diatom only (rbcL) communities after 
seven months of nutrient enrichment. They found that 
there were clear changes in the case of bacterial and 
eukaryotic taxa but more obscure in the case of diatoms. 
Also, they found that these changes could be observed 
within 150 g N m-2 of fertiliser treatment, suggesting 
that early signs of ecosystem degradation could be 
studied and the restoration process could be initiated 
using such shifts in the structure of communities as 
cues. Such methods were used initially for species 
detection and quantification,  now it has been used for 

ecosystem assessment and monitoring for its health. The 
focus on studying community structure as a measure of 
predicting ecosystem health has advantages as it brings 
about a holistic view of the same and helps acknowledge 
the fact how species interdependency is linked to 
abiotic factors as well. One such study in this regard was 
by Yang & Zhang (2020), where they used zooplankton 
community to assess the quality of the ecosystem. They 
showed across three seasons, i.e., dry, normal and 
wet, the species detected remained the same but their 
relative abundances changed at the temporal scale. 
The study also emphasised that though eDNA based 
abundance studies are the semi-quantitative presence 
of species along with changing relative abundances of 
indicator zooplankton species at spatial-temporal scale. 
The water quality index correlated with 60 different 
zooplankton indices which were both qualitative and 
quantitative. But such correlations need not always be 
direct/correct due to other confounding factors like 
interaction with other species communities, which 
in turn influence the zooplankton community. Such 
studies aren’t limited to only aquatic systems but also 
have seen recent applications in analysing sediment 
pollution from coastal regions at a spatiotemporal scale. 
In a study by Lee et al. (2020), the changes in microbial 
diversity at phylum level showed variation concerning 
13 environmental variables of sediment pollution and 
toxicity. Although certain phyla remained dominant 
others showed shifts in community structure.

Whole-genome or metagenome-assembled-genomes 
(MAGs) based studies

Most of the above-mentioned studies are based on 
the amplification of the universal marker regions of DNA 
or amplicon-based 16sRNA sequencing and can have 
bias during PCR (Jovel et al. 2016). They are based on 
the single-gene approach of identification of its taxa. 
One way to solve this is to bring in a multi-gene or whole 
genome-based taxonomic approach. This also helps in 
functional prediction of genes like those involved in the 
biogeochemical cycling by microorganisms  and can be 
of great significance in studying ecosystem services. 
Another method used in recent times to study taxonomy 
based on phylogenetic reconstruction is by assembling 
the metagenomes also called metagenome-assembled 
genomes (MAGs) and is of immense importance in 
culture-independent microbial molecular studies. In a 
study by Tran et al. (2021), the role of specific taxa of 
microbes in biogeochemical processes in the lake, they 
had assembled 24 samples individually by de novo method 
and generated 24 MAGs which were then binned, then 
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finally used for the construction of concatenated gene 
phylogeny using single-copy ribosomal proteins.  They 
found that MAGs showed an abundant genomic capacity 
for nitrogen and sulphur cycling. In another similar work 
by Reji & Francis (2020), MAGs were constructed for a 
lineage of Thaumarchaeota, a phylum of Archaea from 
the marine ecosystem. This lineage seemed to be devoid 
of genomic repertoire only for chemoautotrophy as it 
did not have ammonia-oxidising machinery and other 
pathways related to the same as in other archaeal 
lineages. This highlights the metabolic diversity among 
the microbial communities for nutrient acquisition and 
processing, which is generally not possible in the case 
of culture-dependent molecular studies as most of the 
bacteria are non-culturable.

We find studies in eDNA are becoming broader in 
perspective rather than only species detection, but this 
holds much more potential in coming years in terms 
of answering some basic ecological questions about 
the effect of anthropogenic disturbances that lead 
to changes in abiotic factors of an ecosystem which 
changes community structure composition at spatial 
and temporal scales and threatens ecosystem services 
and ecosystem health. 

Also, there has been very little emphasis on 
understanding the functional role of eDNA studies i.e., 
how it can be used to compare eDNA and eRNA and 
decipher the active constituent of the genome which 
might have an important role in ecological functioning 
like genes responsible for biogeochemical cycling of 
various nutrients in nature. Since RNA has lesser stability 
than DNA, it is a better and more reliable measure for 
studying the presence of an organism or its abundance 
and hence has been used in forensic science to estimate 
the time since deposition of biological material 
(Bremmer et al. 2012).

Technical Challenges of eDNA-based methods
Although eDNA technology has provided a plethora 

of its applications and helped to understand nature in a 
holistic view, it still suffers from a few challenges which 
require more refinement and troubleshooting.

PCR Bias
The foremost problem arises in the estimation of 

relative abundance using a metabarcoding approach 
where PCR bias serves as a major issue. Those taxa 
having organisms that are not affected by seasonal 
variations and are more abundant in number having 
high dispersal ability tend to be over-represented 
during sampling than sedentary and seasonal ones. 

Even the copy number of target loci may vary among 
taxa, individuals, or tissue types. There can be several 
possibilities that can cause bias in PCR amplification 
during metabarcoding. PCR is a stochastic process 
hence can become a source of bias like the number of 
PCR cycles, mismatch in primer binding site, annealing 
temperature, secondary structures in template DNA, 
multiple templates in the sample, more selectivity 
of primers for some specific taxa and copy number 
of target loci (Pinto & Raskin 2012; Elbrecht & Leese 
2015; Fonseca 2018). Nichols et al. (2018), showed that 
polymerase can show bias toward GC sequence and can 
alter the relative abundance of molecules dramatically 
during metabarcoding and that this bias can be removed 
experimentally using a molecular identifier (MID) where 
starting material is disambiguated bioinformatically 
following PCR.

Unknown source of eDNA
There have been reports of transport of undigested 

material of higher organisms or their dead carcasses, 
which gives a false implication of their presence at that 
particular site (Song et al. 2017).

Problems with single-species detection and bias in 
eDNA extraction protocols

Single species detection in the marine environment 
is challenging due to increased dilution, higher salinity, 
and more intermixing of constituents (Cristescu & Hebert 
2018). Higher salt concentration can also inhibit PCR and 
give false implications about the absence of the target 
organism. Continuous sample collection either monthly 
or seasonal depending on the research question might 
serve as a way to overcome false detections. Enrichment 
of extracellular DNA can help in reducing the signal from 
non-target microbial cells as they are more abundant in 
natural ecosystems. 

Chances of false positives and false negatives
False positives errors (Type-I) arise when there is 

no actual presence of the target organism, but still, it is 
detected at that site which can be due to contamination 
issues or problems in PCR optimization or sequencing 
(Schmidt et al. 2013). The specificity of primers also 
plays a vital role in minimizing picking up related species 
having very little sequence variance than the target 
species. False-negative errors (Type-II) arise when 
a target organism fails to get detected even though 
it is present there. This can be attributed to reasons 
like inefficient sample preservation, faulty sampling 
practices, or less sensitivity of detection assay in the 
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case of low-abundant organisms. 

Measuring the absolute abundance of the species is 
practically not possible

Factors governing the quantification of eDNA 
are dependent on countless factors. Many juvenile 
organisms or a lesser number of adult organisms, might 
release an equal amount of eDNA. Hence, biomass 
estimation can be made but estimating abundance can 
be difficult with PCR-based methods (Elbrecht & Leese 
2015). Change in eDNA concentration due to seasonal 
variation has been reported by many, which can lead 
to difficulty in estimation of true abundance (Barnes et 
al. 2014). Maintaining many replicates for PCR and DNA 
isolation can increase the probability of capturing many 
taxa by the metabarcoding approach (Leray & Knowlton 
2017). 

eDNA shedding and decay rates in a particular 
environment govern the quantification of particular 
species. In a study by Sassoubre et al. (2016), eDNA 
decay and shedding rates in seawater mesocosm 
were assessed for three economically and ecologically 
important marine fishes- Engraulis mordax (Northern 
Anchovy), Sardinops sagax (Pacific Sardine), and 
Scomber japonicas (Pacific Chub Mackerel) by Taqman® 
qPCR assay. In another similar study, Round Goby 
Neogobiusme lanostomus, an elusive species, was 
assessed for the shedding and decay rate of eDNA. 
eDNA shedding was measured after fixed time intervals, 
and the effect of temperature on shedding rate was also 
studied. First order decay constants were calculated 
and the decay rate was found to be slightly lower in cold 
water than in warm water. A most significant part of 
the study was that a positive correlation between eDNA 
concentration and the number of round gobies collected 
using two capture methods could be established 
(Nevers et al. 2018). Knowledge about these factors 
together with factors affecting abundance can act as 
a lead in abundance estimation studies. The effect of 
various environmental factors affecting the persistence 
of eDNA and indirectly the abundance has been shown 
by (Barnes et al.2014).

Potential solutions to the challenges:
We have developed a few reflections that might be 

helpful for future eDNA research:

PCR- free methods
As mentioned in the previous section, PCR 

introduces several kinds of biases. Hence developing 
a new methodology to overcome this step during the 

metabarcoding approaches can be of immense value 
in future. Following the same optimized capture and 
isolation protocols for all collected samples along with 
maintaining appropriate controls, increasing the number 
of replicates at each site of sample collection, seasonal 
collection of samples at the same points throughout 
the year and developing of PCR-free approach can 
help to give a picture of near-absolute abundance of 
organisms. Manu & Umapathy (2021), designed a novel 
metagenomic workflow which used PCR-free library 
preparation during Next-generation sequencing (NGS) 
and performed an ultra-deep sequencing and pseudo 
taxonomic assignment to get the biodiversity of an 
ecosystem across the entire tree of life.

Source of eDNA can be both from live and dead 
organisms: In aquatic systems, transport of eDNA has 
been observed for tens of kilometres (Andruszkiewicz et 
al. 2019), hence mere detection of eDNA at a particular 
time neither confirms the exact location nor the source 
since eDNA can persist in systems for approximately 48 
hours (Collins et al. 2018). A probable way of accounting 
for this issue is by an increase in both the number of 
biological and technical replicates as well as sampling 
continuously for a minimum of three days at the same 
locations which might add more confidence to the data 
acquired. 

Sampling criteria, filtration of samples and isolation of 
eDNA protocols

It should be based on the research question. The 
standardisations of all the protocols should consider 
the main hypothesis of the research. For example, if 
the purpose of the research question is only addressed 
towards deciphering prokaryotic diversity, then all the 
protocols should be tweaked to get enriched eDNA 
from that community and also to get maximum diversity 
of that taxa. This might help to get a better and more 
focused results. The enrichment of extracellular DNA 
should be targeted if the question needs studying the 
entire biodiversity of the system. 

Reducing false positives and false negatives
It has been reported that increasing the number 

of replicates during PCR can minimize the chances of 
false negatives. The inclusion of positive control during 
PCR can help check the optimization of PCR conditions. 
To limit the detection of false absence, the number of 
replicates should be a minimum of six for a detection 
probability of 0.5, and for even lower detection 
probability, a minimum of eight replicates are needed 
(Ficetola et al. 2015). When both detection probability 
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and the number of replicates has been too low, it 
was found that this underestimated occupancy and 
overestimated the detection rate (Ficetola et al. 2015).

Only relative abundance can be quantified
Since eDNA yield depends on the developmental 

stage and size of an individual (Petty et al. 2012), 
mesocosm or aquarium-based studies can be 
standardised for a particular developmental stage or 
size of an individual of a species to get an estimate of 
the actual number of individuals, but mimicking natural 
environmental conditions of an ecosystem is very 
difficult and prone to errors. Also, since every ecosystem 
has its own abiotic and biotic features, the results might 
not be reproducible.  

CONCLUSION

The use of eDNA and its multitude of applications 
has become a fast-developing area. This outpour comes 
in the light of the increasing need to monitor changes in 
our environment and how living organisms are affected 
by them. This helps to have better conservation focus 
on regions or species of special importance. In this era 
of unprecedented climate change and the concerns 
possessed by it, eDNA can help assist in the monitoring 
of biodiversity alongside other conventional methods 
to yield better results. Any new technology calls for 
new challenges and room for improvement, so is with 
eDNA where chances of contamination and bias for 
the detection of abundant species are higher. But 
with more stringent methodology and computational 
advancements, the risks are getting minimised. It has 
the potential to answer many deeper questions of 
research in this area. 
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