

Building evidence for conservation globally
**Journal of
Threatened
TAXA**

Open Access

10.11609/jott.2022.14.4.20811-20950

www.threatenedtaxa.org

26 April 2022 (Online & Print)

14(4): 20811-20950

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)

No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti,

Coimbatore, Tamil Nadu 641035, India

Ph: +91 9385339863 | www.threatenedtaxa.org

Email: sanjay@threatenedtaxa.org

EDITORS**Founder & Chief Editor****Dr. Sanjay Molur**Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, India**Deputy Chief Editor****Dr. Neelesh Dahanukar**

Noida, Uttar Pradesh, India

Managing Editor**Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, India**Associate Editors****Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India**Dr. B.A. Daniel**, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India**Editorial Board****Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mr. Arul Jagadish**, ZOO, Coimbatore, India**Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2019–2021****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinando Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Kadoorie Farm and Botanic Garden Corporation, Hong Kong S.A.R., China**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjani Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasimhan**, Botanical Survey of India, Howrah, India**Dr. Larry R. Nobile**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Baños, Laguna, Philippines**Dr. P.A. Sinu**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of Natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, Bangladesh**Mr. Jatishwar Singh Irungbam**, Biology Centre CAS, Brno, Czech Republic.**Dr. Ian J. Kitching**, Natural History Museum, Cromwell Road, UK**Dr. George Mathew**, Kerala Forest Research Institute, Peechi, IndiaFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Population abundance of Greater Flamingo *Phoenicopterus roseus* (Aves: Phoenicopteridae) in district Gurugram of Haryana, India

Amit Kumar¹ & Sarita Rana²

¹ Department of Zoology, Kurukshetra University, Kurukshetra, Haryana 136119, India.

² Department of Zoology, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana 136119, India.

¹ kdamit8@gmail.com (corresponding author), ² saritarana20@gmail.com

Abstract: We quantified the population abundance of Greater Flamingo *Phoenicopterus roseus* in Najafgarh Drain (Jheel), Basai Wetland, and Sultanpur flats of district Gurugram, Haryana from October 2018 to December 2020. A total of 72 visits were made to the study sites. In this study, we explored the uses of an unmanned aerial vehicle (UAV) equipped with a 5-megapixel camera to census the population and distribution of Greater Flamingos. The Nikon 10 x 50 field binoculars were used for observations. A photographic record was taken using a Canon Powershot sx70hs camera. To estimate the population size, point count method was used and videos and image analysis were carried out for a more accurate count in densely packed flocks. The mean population of Greater Flamingos was 267 ± 47 observed throughout the study period from the three sites. For three years, the highest mean population of Greater Flamingos recorded was 745 ± 76 at Najafgarh Drain and the lowest was 19 ± 8 at Sultanpur Flats. The Greater Flamingos were found to be residents at Najafgarh Drain. At the Basai Wetland, two major human activities were the construction of highways along wetlands and wetland drainage have been observed that resulted in habitat fragmentation and shrinkage, which is responsible for the huge decline in their population. While at Najafgarh Jheel fishing activities and overgrowth of water hyacinth were a major threat that affect the Greater Flamingo population. The findings in this study will be beneficial for the conservation efforts of the flamingos in this area.

Keywords: Distribution, drone, population abundance, Najafgarh Drain, UAV.

Editor: H. Byju, Coimbatore, Tamil Nadu, India.

Date of publication: 26 April 2022 (online & print)

Citation: Kumar, A. & S. Rana (2022). Population abundance of Greater Flamingo *Phoenicopterus roseus* (Aves: Phoenicopteridae) in district Gurugram of Haryana, India. *Journal of Threatened Taxa* 14(4): 20821-20827. <https://doi.org/10.11609/jott.7607.14.4.20821-20827>

Copyright: © Kumar & Rana 2022. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Council of Scientific & industrial Research (CSIR).

Competing interests: The authors declare no competing interests.

Author details: DR. SARITA RANA is an Assistant professor in Department of Zoology, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra. Her field of research includes ornithology, Animal ecology and Wildlife conservation. MR. AMIT KUMAR is a research scholar and pursuing his PhD from Department of Zoology, Kurukshetra University, Kurukshetra.

Author contributions: SR and AK conceived and designed the study. Both the authors equally contribute in field data collection, preparation of draft of the manuscript and data analysis.

Acknowledgements: The authors are thankful to the CSIR, New Delhi for providing financial support to carry out the present study and to the Department of Zoology, Kurukshetra University, Kurukshetra for providing the necessary facilities to carry out this study.

INTRODUCTION

Greater Flamingo *Phoenicopterus roseus* is a significant species of the family Phoenicopteridae, it is one of the long-legged water-wading birds belonging to the order *Phoenicopteriformes* (Ali et al. 1987). Flamingos are gregarious birds that are found in groups, extending from a few to thousands or lakhs and their group is termed 'Pat' (Tere 2005; Johnson & Cezilly 2007). Presently, six species of flamingos are known globally, among which four species namely the Caribbean Flamingo *Phoenicopterus ruber*, the Chilean Flamingo *Phoenicopterus chilensis*, the James Flamingo *Phoenicopterus jamesi*, and the Andean Flamingo *Phoenicopterus andinus* are found in Asia, Europe, South America, and North America (Ogilvie & Ogilvie 1986). Two species of flamingos, namely, the Lesser Flamingo *Phoenicopterus minor* and Greater Flamingo *Phoenicopterus roseus* are found in India (Grimmett et al. 1998).

Flamingo groups extend from a few individuals to thousands and are seen in freshwater, saltwater, brackish water habitats, shallow lagoons, alkaline lakes, saltfans, and mudflats (Del Hoyo et al. 1992; Grimmett et al. 1998). Greater Flamingos continuously cluster in large feeding flocks or groups during the non-breeding season (Allen 1956). Both of these flamingo species are known to breed at Little Rann of Kachchh in Gujarat in large colonies (Rameshchandra 2014). Greater Flamingos are reported continuously from western Africa to southwestern and southern Asia, and throughout the sub-Saharan region of Africa.

The population of western Africa, Iran, and Kazakhstan seem to be expanding, while the Asian and sub-Saharan African populations seem to be constant (Delany & Scott 2006). The Rann of Kutch in Gujarat, India is a well-known breeding location at the India-Pakistan border (Ali & Ripley 2001), where the world's largest aggregation of Greater Flamingos can be seen (Shivrajkumar et al. 1983). Greater Flamingos have been recorded from Gujarat, Andhra Pradesh, Odisha, Maharashtra, Karnataka, Kerala, Rajasthan, Uttar Pradesh, and Tamil Nadu (Grimmett et al. 1998; Ramesh & Ramachandran 2005; Tere 2005; Kidwai & Bhattacharjee 2016; Arjun & Roshnath 2018; Parasharya & Gadhvi 2020).

Limited studies have been reported on the Greater Flamingo in India (Ramesh & Ramachandran 2005; Tere 2005; Arjun & Roshnath 2018) and most of the studies are limited to the coastal wetlands.

From the literature reviewed it was found that no

previous work has been made so far in Haryana, to study the distribution pattern and population size of Greater Flamingos apart from Kumar & Rana (2021). The present study was undertaken to assess the pattern of distribution of Greater Flamingos in Gurugram, Haryana. As a part of a detailed ecological study of flamingos, we surveyed the selected sites in Gurugram Haryana; their numbers were counted from 2018 to 2020 to understand their abundance and population size.

STUDY AREA

Primary visits were made to a few wetlands of Gurugram (Haryana) to select a suitable investigation site. Finally, three sites in Gurugram—Basai wetland (28.471N, 76.985E), Najafgarh Drain (28.498N, 76.946E), and Sultanpur Flats (28.455N, 76.890E)—were selected (Figure 1). Basai wetland is a perennial shallow-water wetland, located in the village of Basai on the outskirts of the Gurugram district of Haryana. Najafgarh drain, located at Delhi-Haryana border, is estimated around 7 km long and is the part of dying Sahibi river. Much of the region covered by the Najafgarh Drain is located in two villages, Kherki Majra and Dhankot. As untreated sewage flows into it, the Najafgarh drain is one of the most contaminated, but productive habitats for many species of birds and plants. Sultanpur flats are the area around Sultanpur National Park and include various habitats such as grasslands, fields, and uncultivated lands. Paddy fields, wheat, and mustard were the dominant vegetation observed in each study area.

MATERIAL AND METHODS

Monthly visits were made to selected sites. The unmanned aerial vehicle (UAV) system (drone) was used to study the population and distribution of Greater Flamingos in Gurugram (Haryana). In the present study, the DJI Tello UAV drone (Image 1) in combination with Apple iPhone 11 mobile devices were used. This drone, a quadcopter (having four rotors) equipped with a 5MP HD camera with 720p recording. The drone is controlled by the smartphone app 'Tello'. The Nikon 10 x 50 field binocular was used for observations. Photographic records were taken using a Canon Powershot sx70hs camera. The total count method has been used to count flamingos for small congregations (Bibby et al. 2000; Sutherland 2006). To make an accurate count of densely packed flock drone was used to capture aerial photographs and videos, then an analysis of aerial photographs and videos was done. A manual tally counter

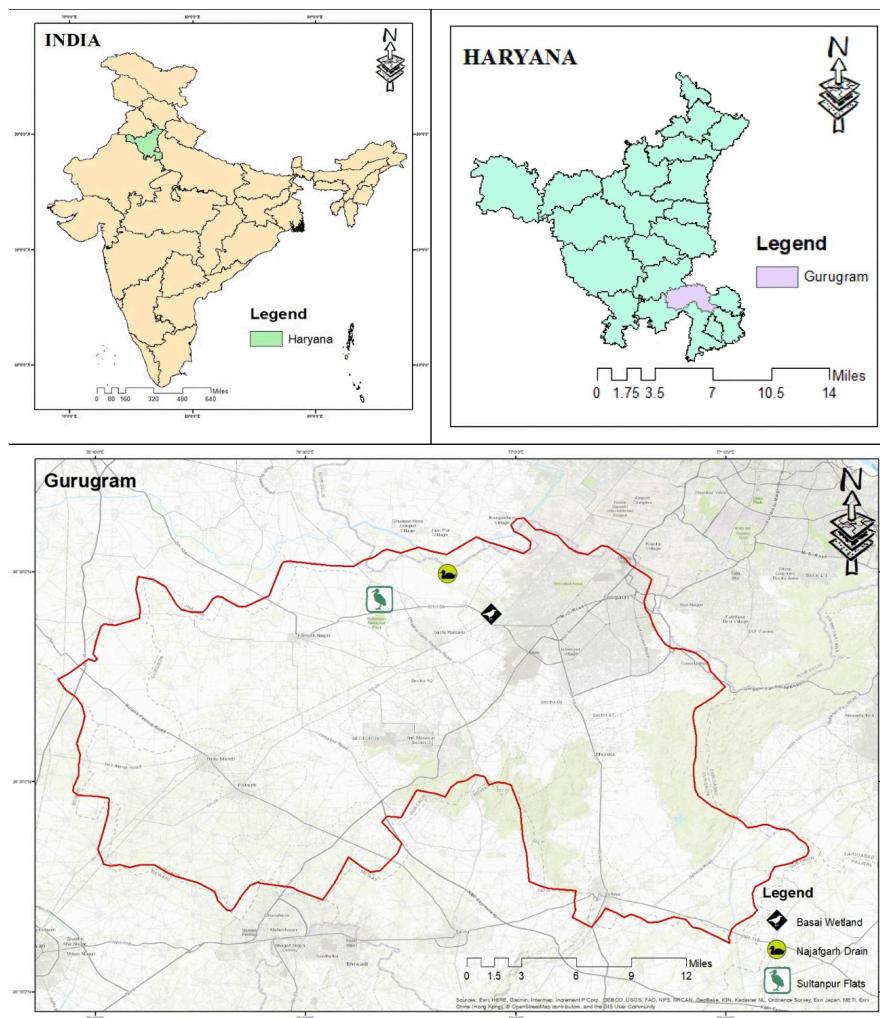


Figure 1. Study area map showing various study sites in district Gurugram.

Image 1. DJI Tello drone used to operate the drone for the aerial population census of Greater Flamingo in large densely packed.

was used for the census of large colonies of Greater Flamingos for an accurate count (Rameshchandra 2014). To reach study sites various modes of transport were used. For each sighting of Greater Flamingos, GPS coordinates were taken using the handheld GPS device Garmin Etrex 30x.

RESULTS

A total of 24 visits were made to each site for three years (Oct 2018–Dec 2020). The summary of Greater Flamingo numbers (N) observed at each site during sampling years (2018–2020) is enlisted in Table 1; 19,230 flamingos were observed during the visit, out of which the highest mean population of flamingos (745 ± 76) was recorded in Najafgarh Drain followed by Basai Wetland (34 ± 6) and Sultanpur Flats (19 ± 8). For the three years,

Table 1. Greater Flamingos in the various reservoirs of Gurugram censused from October 2018 to December 2020.

	Location	Coordinates	Year	Number of visits	Mode of flamingos seen	Mean \pm SE
1	Basai Wetland	28.478 N 76.982 E	2018	3	118	56 \pm 34
			2019	12	88	46 \pm 8
			2020	9	69	19 \pm 9
2	Najafgarh Drain	28.774 N 76.622 E	2018	3	957	794 \pm 100
			2019	12	1350	969 \pm 64
			2020	9	937	430 \pm 123
3	Sultanpur Flats	28.468 N 76.892 E	2018	3	170	61 \pm 54
			2019	12	51	13 \pm 5
			2020	9	70	13 \pm 8

*SE = Standard Error

the maximum number of Greater Flamingos counted per visit was 1,350 individuals at Najafgarh Jheel, 118 individuals at Basai Wetland, and 170 individuals at Sultanpur Flats.

Among three years of study, the highest mean population of individuals was observed at Najafgarh Drain in 2019 (969 ± 123) while the highest mean population in Basai Wetland (56 ± 34) and Sultanpur Flats (61 ± 95) was recorded during the year 2018. The mean number of individuals at Najafgarh Drain was similar during 2019 and 2020. In the case of Basai Wetland, the lowest mean population was recorded during the year 2020. The present study shows that Najafgarh Drain holds the maximum number of individuals (> 400) of Greater Flamingos in all three years as compared to other sites. There is a decline in the number of individual sightings observed during 2020 which may be associated with an increase in road construction and fishing activities at Basai Wetland and Najafgarh Jheel.

DISCUSSION

To implement the conservation measures for any species current population size and frequented habitats must be determined before management steps can be implemented. Earlier studies indicated that the Greater Flamingos favored coastal wetlands, but they can live in inland wetlands as well (Tere 2005). They are known to migrate in large flocks to the south-eastern coasts of India during the winter (Nagarajan & Thiyyagesan 1996; Balachandran 2006; 2012); and all year surveys are required to differentiate migratory populations from the resident ones. Greater Flamingos are the winter visitors in Lalitpur (Uttar Pradesh). The current research was

conducted on various Greater Flamingo inhabiting sites of Gurugram (Haryana) covering the freshwater bodies. The Greater Flamingos were found to be residents at Najafgarh Drain. As previously reported, flamingo abundance fluctuated in response to water level and rainfall patterns (Vargas et al. 2008). Najafgarh Drain is the major stronghold of Greater Flamingos in the area. Flamingos use various parts of the Drain for foraging predominantly in the shallow areas (Image 2A).

The Greater Flamingos were also found to be distributed at Basai Wetland and Sultanpur Flats, but only till water levels were adequate for their sustenance. The unavailability of water in these areas is one of the major reasons for their low abundance. We observed that flamingos leave these sites as water levels start to decline with the end of the rainy season.

It was reported that when the wetland dried up or when food became scarce, they were forced to relocate to a new environment, such as a nearby perennial water body or a location that was a long distance away (Johnson 1989). Najafgarh Drain supports the maximum population of Greater Flamingo as its large area and the availability of water is one of the main reasons for their large aggregation throughout the year. The Najafgarh Drain is a freshwater reservoir that provides a vast expanse of shallow water and food to sustain Flamingos all year round. On the other hand, a minimum number of flamingos counted in Basai Wetland and Sultanpur Flats. The availability of water in these areas is one of the major reasons for their minimum aggregation. At the end of rainy seasons when water levels start to decline and these sites start dry out, flamingos start to leave these sites. Any ecosystem that provides food in sufficient quantity and quality contributes significantly to the survival of its fauna. As a result, differences in the

Image 2. A—Aerial photographs of Greater Flamingos captured at Najafgarh Drain using DJI, TELLO UAV Drone (circle and other shapes are represents to show how a photo interpretation was done to count the flamingos) | B—Flamingos at the dried field | C—Greater Flamingo flocks foraging in shallow water. © Amit Kumar

number of Greater Flamingos inside and among lakes may be due to seasonal access of diet.

Utility of UAVs in surveying flamingoes

UAVs have a wide range of uses in ecological and behavioral studies but have been used infrequently in India. Outside India, UAVs technology has been used

for avian research for example, to count the number of nesting Wood Storks *Mycteria americana* (Rodgers et al. 1995), assessing the nesting success of species of canopy-nesting birds (Weissensteiner et al. 2015), common terns (Chabot et al. 2015), Lesser Black-backed Gulls (Rush et al. 2018), breeding population of Glossy Ibis *Plegadis falcinellus* (Afán et al. 2018), to survey five species of colonial marshbirds (McKellar et al. 2021) and waterfowl (Dundas et al. 2021). UAV technology has been also used for the study of other animal species such as to survey Nile Crocodile populations (Ezat et al. 2018) and basking freshwater turtle species (Bogolin et al. 2021). We used UAV, DJI Tello, for surveying densely packed Flamingos Group at Najafgarh Drain (Image 1). Aerial counting, for example, was more precise and reliable than ground counting using aerial photographs of penguin colonies (Fraser et al. 1999); geese (Boyd 2000), and similar advantages have been shown for imagery obtained by drones (Hodgson et al. 2016).

In this study, recent technological advancements such as the UAV were used. This will be fruitful to develop new field approaches for monitoring the population status and abundance of Greater Flamingos in Haryana, India. The advanced UAV system unmanned aerial vehicles, or drones, collect exceptionally high spatial resolution data with temporal versatility (Anderson & Gaston 2013). Drones equipped with a camera provide new opportunities for the study of population census and distribution of species (Koh & Wich 2012). Analysis of drone video data enabled us to review and pause on larger flocks, making them easier to count and recognize, resulting in more accurate counts (Dundas et al. 2021).

In the aerial photograph, each individual is easily recognizable as shown in Image 2A. Furthermore, the aerial picture made Greater Flamingo enumeration even simpler. Aerial imagery makes counting the densely packed flocks easier as compared to visual ground count. Flamingos were found to forage in various parts of the Najafgarh Drain, particularly in the shallow water areas (Image 2A) whereas in the area of Sultanpur Flats flamingos were found occasionally whenever the availability of water is sufficient for these birds (Image 2C). When compared to traditional ground counts, drone-derived counts are more precise (Dundas et al. 2021).

With the use of UAVs, the accuracy of manual waterbird colony counts has increased drastically. This eliminates visual interpretation bias and ensures that data is similar throughout time. Drones, in particular, can help to census the population of waterbirds and overcome the difficulties of assessing areas that are

difficult to reach on foot.

CONCLUSION

The present study was carried out at three selected sites in Gurugram (Haryana) to find out the population of Greater Flamingos. The Greater Flamingos were found to be residents at Najafgarh Drain. There is a continuous decline observed in the population of flamingos. At the Basai Wetland, there was a drastic decline observed in the flamingo population and road construction along the wetland was one of the major threats responsible for the decline in their population. We used a UAV drone to census the population of Greater Flamingos. At Najafgarh Jheel, drones proved to be an excellent tool for surveying the Greater Flamingos population and were found to be more accurate than ground counts. The findings in this study will be extremely beneficial to undertake conservation efforts of the flamingos in this area.

REFERENCES

- Afan, I., M. Manez & R. Diaz-Delgado (2018). Drone monitoring of breeding waterbird populations: the case of the glossy ibis. *Drones* 2(4): 42.
- Ali, S. & S.D. Ripley (2001). *Handbook of the birds of India and Pakistan together with those of Bangladesh, Nepal, Bhutan, and Sri Lanka*. Oxford University Press, 2060 pp.
- Ali, S., S.D. Ripley & J.H. Dick (1987). *Compact Handbook of the birds of India and Pakistan*. (Compact ed.). Oxford University Press, 841 pp.
- Allen, R.P. (1956). *The flamingos: their life history and survival, with special reference to the American or West Indian Flamingo (Phoenicopterus ruber)* (No. 5). National Audubon Society, 285 pp.
- Anderson, K. & K.J. Gaston (2013). Lightweight unmanned aerial vehicles will revolutionize 494 spatial ecology. *Frontiers in Ecology and the Environment* 11: 138–146.
- Arjun, C.P. & R. Rosnath (2018). Status of Greater Flamingos *Phoenicopterus roseus* in Kerala. *Indian Birds* 14(2): 43–45.
- Balachandran, S. (2006). The decline in wader populations along the east coast of India with special reference to Point Calimere, south-east India. In: Boere, G.C., C.A. Galbraith & D.A. Stroud (eds.). *Waterbirds Around the World*. The Stationery Office, Edinburgh, 248 pp.
- Balachandran, S. (2012). Avian diversity in coastal wetlands of India and their conservation needs. Marine Biodiversity, International Day for Biological Diversity, Uttar Pradesh Biodiversity Board, UP, 155–163pp.
- Bibby, C.J., N.D. Burgess, D.A. Hill & S.H. Mustoe (2000). *Bird Census Techniques*. 2nd edition. Academic Press, London, 302 pp.
- Bogolin, A.P., D.R. Davis, R.J. Kline & A.F. Rahman (2021). A drone-based survey for large, basking freshwater turtle species. *PLoS one* 16(10): e0257720. <https://doi.org/10.1371/journal.pone.0257720>
- Boyd, W.S. (2000). A comparison of photo counts versus visual estimates for determining the size of snow goose flocks. *Journal of Field Ornithology* 71: 686–690.
- Chabot, D., S.R. Craik & D.M. Bird (2015). Population census of a

- large common tern colony with a small unmanned aircraft. *PLoS one* 10(4): e0122588. <https://doi.org/10.1371/journal.pone.0122588>
- Del Hoyo, J. (1992).** Family *Phoenicopteridae* (Flamingos). In: del Hoyo, J., A. Elliot & J. Sargatal (eds.). *Handbook of the Birds of the World*. Lynx Edicions, Barcelona, 696 pp.
- Delany, S. & D. Scott (2006).** *Waterbird Population Estimates*. Wetlands International, Wageningen, 248 pp.
- Dundas, S.J., M. Vardanega, P. O'Brien & S.R. McLeod (2021).** Quantifying waterfowl numbers: comparison of drone and ground-based survey methods for surveying waterfowl on artificial waterbodies. *Drones* 5(1): 5.
- Ezat, M.A., C.J. Fritsch & C.T. Downs (2018).** Use of an unmanned aerial vehicle (drone) to survey Nile Crocodile populations: a case study at Lake Nyamithi, Ndumo Game Reserve, South Africa. *Biological Conservation* 223: 76–81.
- Fraser, W.R., J.C. Carlson, P.A. Duley, E.J. Holm & D.L. Patterson (1999).** Using kite based aerial photography for conducting Adelie penguin censuses in Antarctica. *Waterbirds* 22: 435–440.
- Grimmett, R., C. Inskip & T. Inskip (1998).** *Birds of the Indian Subcontinent*. Oxford University Press, Delhi, 480 pp.
- Hodgson, J.C., S.M. Baylis, R. Mott, A. Herrod & R.H. Clarke (2016).** Precision wildlife monitoring using unmanned aerial vehicles. *Scientific Reports* 6(1): 1–7.
- Johnson, A.R. (1989).** Movements of greater flamingos (*Phoenicopterus ruber roseus*) in the Western Palearctic. *Revue D'écologie* 44: 75–94.
- Johnson, A.R. & F. Cezilly (2007).** *The Greater Flamingo*. T. & A.D. Poyser, London, United Kingdom, 328 pp.
- Kidwai, Z. & S. Bhattacharjee (2016).** An observation of Greater Flamingos (*Phoenicopterus roseus*) in Chicharli wetland, Dhawa, Rajasthan, India. *Zoo's Print* 31(3): 1–2.
- Koh, L.P. & S.A. Wich (2012).** Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. *Tropical Conservation Science* 5(2): 121–132.
- Kumar, A. & S. Rana (2021).** Population and conservation threats to the Greater Flamingos *Phoenicopterus roseus* (Aves: Phoenicopteriformes: Phoenicopteridae) at Basai Wetland and Najafgarh Jheel Bird Sanctuary, Haryana, India. *Journal of Threatened Taxa* 13(7): 18894–18898. <https://doi.org/10.11609/jott.6258.13.7.18894-18898>
- McKellar, A.E., N.G. Shephard & D. Chabot (2021).** Dual visible-thermal camera approach facilitates drone surveys of colonial marshbirds.
- Remote Sensing in Ecology and Conservation* 7(2): 214–226.
- Nagarajan, R. & K. Thiyagesan (1996).** Waterbirds and substrate quality of the Pichavaram wetlands, southern India. *Ibis* 138(4): 710–721.
- Ogilvie, M. & C. Ogilvie (1986).** *Flamingos*. Allan Sutton Publishing Limited, Gloucester, 121 pp.
- Parasharya, B.M. & I.R. Gadhwani (2020).** First report of successful breeding of Greater Flamingo in the Gulf of Khambhat, India outside its traditional nesting range. *Indian Birds* 15(5): 136–139.
- Ramesh, D.A. & S. Ramachandran (2005).** Factors influencing Flamingo (*Phoenicopterus roseus*) distribution in the Pulicat lagoon ecosystem, India. *Wetland Ecology & Management* 13: 69–72.
- Rameshchandra, V.V. (2014).** Studies on Lesser Flamingo (*Phoeniconaias minor*) with special reference to ecology, threats and conservation management. PhD Thesis The M.S. University of Baroda, Gujarat, 213 pp.
- Rodgers Jr. J.A., S.B. Linda & S.A. Nesbitt (1995).** Comparing aerial estimates with ground counts of nests in wood stork colonies. *The Journal of Wildlife Management* 59(4): 656–666.
- Rush, G.P., L.E. Clarke, M. Stone & M.J. Wood (2018).** Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds. *Ecology and Evolution* 8(24): 12322–12334.
- Shivrajkumar, J., R.M. Naik & K.S. Lavkumar (1983).** A visit to the flamingos in the Great Rann of Kutch, pp. 484–493. In: Daniel, J.C. (ed.). *A Century of Natural History*. Bombay Natural History Society/Oxford University Press.
- Sutherland, W.J. (2006).** *Ecological Census Techniques: A Handbook*. 2nd edition. Cambridge University Press, 185 pp.
- Tere, A. (2005).** Ecology of Greater Flamingo (*Phoenicopterus roseus*) and Lesser Flamingo (*Phoenicopterus minor*) on the wetlands of Gujarat. PhD Thesis. The M.S. University of Baroda, Gujarat, 193 pp.
- Vargas, F.H., S. Barlow, T. Hart, G. Jimenez-Uzcategui, J. Chavez, S. Naranjo & D.W. Macdonald (2008).** Effects of climate variation on the abundance and distribution of flamingos in the Galápagos Islands. *Journal of Zoology* 276(3): 252–265.
- Weissensteiner, M.H., J.W. Poelstra & J.B. Wolf (2015).** Low-budget ready-to-fly unmanned aerial vehicles: An effective tool for evaluating the nesting status of canopy-breeding bird species. *Journal of Avian Biology* 46(4): 425–430.

Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lionel Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kuri R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith W. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2019–2021

Due to paucity of space, the list of reviewers for 2018–2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:

The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road,
Saravanampatti, Coimbatore, Tamil Nadu 641035, India
ravi@threatenedtaxa.org

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Communications

Study on the diversity of birds in the new abode of wetlands created by the 2004 tsunami in South Andaman

– Neelam Purti, V. Shiva Shankar, G. Narshimulu, Satyajit Halder, C. Ramayya & Ravi Pratap Singh, Pp. 20811–20820

Population abundance of Greater Flamingo *Phoenicopterus roseus* (Aves: Phoenicopteridae) in district Gurugram of Haryana, India

– Amit Kumar & Sarita Rana, Pp. 20821–20827

Freshwater fish diversity in hill streams of Saberi River in Eastern Ghats of Odisha, India

– Supriya Surachita & Sharat Kumar Palita, Pp. 20828–20839

Hatching in Coromandel Marsh Dart Damselfly *Ceriagrion coromandelianum* (Fabricius) (Zygoptera: Coenagrionidae): process and influence of the oviposition substrate

– Payal Verma, Nilesh Thaokar & Raymond Andrew, Pp. 20840–20847

Distribution of the genus *Pinguicula* (L., 1753) (Lentibulariaceae) in Gunma Prefecture, Japan with new records

– Hiro Shimai & Takehiro Ohmori, Pp. 20848–20858

Reproductive biology of two threatened and highly traded medicinal plants, *Salacia gambleana* and *Salacia oblonga*, from the Western Ghats of India

– P.S. Krishnasree, P.A. Jose, K. Subin & T.V. Sarath, Pp. 20859–20865

Cytotaxonomy and palynology study of some weed species from the state of Punjab, India

– Rai Singh & M.C. Sidhu, Pp. 20866–20872

Philately of mangroves: local to global reflection

– Mahesh Shindikar, Yogesh Deshpande, Prasad Kulkarni, Anand Billade & Ajit Vartak, Pp. 20873–20889

Amanitaceous fungi of central Western Ghats: taxonomy, phylogeny, and six new reports to Indian mycobiota

– Rangappa Kantharaja & Maddappa Krishnappa, Pp. 20890–20902

Short Communications

Distribution records of Dormer's Bat *Scotozous dormeri* (Dobson, 1875) (Mammalia: Chiroptera: Vespertilionidae) in Nepal

– Dibya Raj Dahal, Sanjan Thapa, Delip Singh Chand & Nanda Bahadur Singh, Pp. 20903–20907

A report on the butterfly (Lepidoptera: Rhopalocera) diversity of the Upper Ganga River Ramsar site in Uttar Pradesh, India

– Kritish De, Keshav Kumar, Amar Paul Singh, Virendra Prasad Uniyal & Syed Ainul Hussain, Pp. 20908–20914

Case report of hook worm *Grammocephalus hybridatus* and stomach bot *Cobboldia elephantis* infections in a free-ranging Asian Elephant *Elephas maximus* in Tamil Nadu, India

– Kaveri Theerthagiri Kavitha, Chirukandoth Sreekumar & Bhaskaran Ravi Latha, Pp. 20915–20920

Management of traumatic ulcerative keratitis in a Red Serow

– Deepjyoti Deka, Panchami Sharma, Arup Das, Kongkon J. Dutta, Syed A. Arif & Tinku Das, Pp. 20921–20925

Notes

Group size pattern and distribution of threatened Sambar *Rusa unicolor* (Artiodactyla: Cervidae) in Moyar River Valley, India

– Vedagiri Thirumurugan, Chandravilasam Sreedharan Nair Vishnu, Nehru Prabakaran & Chinnasamy Ramesh, Pp. 20926–20929

First photographic record of the presence of Smooth-coated Otter *Lutrogale perspicillata* in Ghaghra River, India

– Saurav Gawan, Ashish K. Panda & Aakash Mohan Rawat, Pp. 20930–20934

Back after 40 years: a rare sighting of Eurasian Siskin *Spinus spinus* (Linnaeus, 1758) (Aves: Passeriformes: Fringillidae) in Himachal Pradesh, India

– Paul Pop, Kuldeep Singh Barwal, Puneet Pandey, Harminder Pal Singh & Randeep Singh, Pp. 20935–20938

First record of the jumping spider *Pancorius changicus* Žabka, 1990

from India (Araneae: Salticidae)

– Anushka Gurung, Aita Hang Subba Limboo, Bhoj Kumar Acharya & Dhruv A. Prajapati, Pp. 20939–20942

An abandoned nest of *Vespa affinis* (Hymenoptera: Vespidae)

– Shanjida Sultana & Sharmin Akter, Pp. 20943–20945

Endemic *Primula xanthopha* Balf.f. & R.E. Cooper: rediscovery after 88 years from Bumdeling Wildlife Sanctuary, Bhutan

– Namgay Shacha, Karma Sangay, Tshering Dendup & Tez Bdr Ghalley, Pp. 20946–20950

Publisher & Host

