

Building evidence for conservation globally
**Journal of
Threatened
TAXA**

Open Access

10.11609/jott.2022.14.3.20703-20810
www.threatenedtaxa.org

26 March 2022 (Online & Print)
14(3): 20703-20810
ISSN 0974-7907 (Online)
ISSN 0974-7893 (Print)

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti,

Coimbatore, Tamil Nadu 641035, India

Ph: +91 9385339863 | www.threatenedtaxa.orgEmail: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay MolurWildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),
12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, India

Deputy Chief Editor

Dr. Neelesh Dahanukar

Noida, Uttar Pradesh, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India**Dr. B.A. Daniel**, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India

Editorial Board

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors**Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mr. Arul Jagadish**, ZOO, Coimbatore, India**Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2019–2021****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinando Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Kadoorie Farm and Botanic Garden Corporation, Hong Kong S.A.R., China**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantpur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjani Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasimhan**, Botanical Survey of India, Howrah, India**Dr. Larry R. Nobile**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Baños, Laguna, Philippines**Dr. P.A. Sinu**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of Natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, Bangladesh**Mr. Jatishwar Singh Irungbam**, Biology Centre CAS, Brno, Czech Republic.**Dr. Ian J. Kitching**, Natural History Museum, Cromwell Road, UK**Dr. George Mathew**, Kerala Forest Research Institute, Peechi, IndiaFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Rufous-headed Hornbill *Rhabdotorrhinuswaldeni* © Philip Godfrey C. Jakosalem.

Status and distribution of Mugger Crocodile *Crocodylus palustris* in the southern stretch of river Cauvery in Melagiris, India

Rahul Gour¹ , Nikhil Whitaker² & Ajay Kartik³

¹ Kenneth Anderson Nature Society, No.9/2, HCF Post, Mathigiri, Hosur, Tamil Nadu 635110, India.

¹ Department of Ecology & Environmental Sciences, School of Life Sciences, Pondicherry University, Puducherry 605014, India.

^{2,3} Madras Crocodile Bank Trust and Centre for Herpetology, 4, Mamallapuram, Tamil Nadu 603104, India.

¹rahulkgour@gmail.com (corresponding author), ²nikhil@madrascrocodilebank.org, ³ajaykartik88@gmail.com

Abstract: A study was conducted to examine the population estimate and spatial distribution of Mugger Crocodile in the southern stretch of river Cauvery, Hosur Forest Division from February 2019 to May 2019. In total, 53 basking sites and 45 Muggers were encountered by direct sighting in the 24-km river stretch using daytime ground based survey approach. N-mixture models estimated an average Mugger density of 2.05 individuals per kilometre for daytime survey. A night spotlight survey across the seven segments of river stretch was also conducted which yielded direct sightings of 54 Muggers with an average encounter rate of 2.25 individuals per kilometre. Two crocodile nests with hatched egg shells were also observed on the sand banks of the river. We concluded that a potential healthy and breeding population of Mugger inhabits the studied stretch of the river. Multiple corresponding analysis was also performed, which demonstrated that Mugger responds to sandy banks alongside deep water pools for basking in contrast to river segments with shallow depth and dense riparian cover.

Keywords: Basking sites, conservation, Hosur Forest Division, nest, night spotlight survey, N-mixture models.

Editor: Raju Vyas, Vadodara, Gujarat, India.

Date of publication: 26 March 2022 (online & print)

Citation: Gour, R., N. Whitaker & A. Kartik (2022). Status and distribution of Mugger Crocodile *Crocodylus palustris* in the southern stretch of river Cauvery in Melagiris, India. *Journal of Threatened Taxa* 14(3): 20733-20739. <https://doi.org/10.11609/jott.7575.14.3.20733-20739>

Copyright: © Gour et al. 2022. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: The present work received no external funding.

Competing interests: The authors declare no competing interests.

Author details: RAHUL GOUR recently graduated from Pondicherry University with a master's degree in ecology and environmental sciences. He has associated with Kenneth Anderson Nature Society on various conservation projects in Melagiris. He is particularly interested in learning about the behavioural ecology of reptiles and megafauna. NIKHIL WHITAKER is a curator at the Madras Crocodile Bank Trust and Centre for Herpetology. He has studied environmental science and wildlife management at Charles Darwin University in Australia. An editor at journals including Taprobanica, Journal of Contemporary Herpetology, and Herpetological Review, and a member of the IUCN/SSC Crocodile Specialist group and Tortoise and Freshwater Turtle Specialist Group. AJAY KARTIK is a herpetologist with a keen interest in the behavioural ecology of reptiles. He has worked with diverse species across several landscapes of India and is an invited member of the IUCN/SSC Crocodile Specialist group and Tortoise and Freshwater Turtle Specialist Group.

Authors contribution: RG—contributed to the fieldwork and manuscript writing; NW—contributed to the work design, technical guidance and review of the manuscript; AJ—contributed to the field support and review of the manuscript.

Acknowledgements: On behalf of Kenneth Anderson Nature Society and Madras Crocodile Bank Trust and Centre for Herpetology, we thank Mr. Deepak Bilge IFS, district forest officer, Hosur Forest Division, Tamil Nadu Forest Department for granting necessary permissions and supporting us during the course of this study. We are thankful to the range forest officers and field staff of Anchettu and Urigam ranges for helping us conduct the surveys. We thank Arvind Adhi, Laxmeesha Acharya, Prem Kumar Aparanji, Prasanna Vyanathanya, and Jason Gerard for leading multiple surveys during the course of the study. We also thank the students of College of Forestry, Kerala and members of Kenneth Anderson Nature Society for volunteering for the surveys. We are also thankful to George Tom for helping with the illustrations (Image 2 & 3) and reviewing an early draft of this paper.

INTRODUCTION

The Marsh or Mugger Crocodile *Crocodylus palustris* (Lesson, 1831) (Image 1), is an apex predator and can be found in different forms of freshwater environment including rivers, ponds, reservoirs, marshes, and also inhabits estuarine habitats (Whitaker 1987; Whitaker & Whitaker 1989). Its range extends from southern Iran to the Indian subcontinent and is one of the most adaptable crocodilian species in India (Da Silva & Lenin 2010). The Mugger is legally protected in India under Schedule I of the Wildlife Protection Act, 1972, and categorized as 'Vulnerable' under the IUCN Red List of Threatened Species (Choudhury & De Silva 2013). Awareness about crocodile distribution and the ecosystem services provided by them is essential to better conserve the species and their habitats. An increasing number of studies have focused on the distribution of Mugger in various parts of India (Rao & Choudhury 1993; Singh 1999; Vyas 2012). Here we present the distribution and population status of Muggers in the small stretch of Cauvery river that runs through dense riparian forests of Tamil Nadu and Karnataka.

MATERIALS AND METHODS

Study site

Cauvery (also known as Kaveri) is a perennial river that originates in the Brahmagiri range of the Western Ghats, Karnataka. The river enters Tamil Nadu through the Hosur Forest Division in Krishnagiri district leading to the flat plains where it meanders. A continuous river stretch of 24 km was chosen to conduct the survey starting from Dabaguli (12.205N, 77.545E) upstream to Moslaemaduvu (12.149N, 77.748E) downstream (Figure 1). The region comes under the Melagiri Hill ranges which is an important wildlife habitat between the Western and Eastern Ghats (Daniel & Ishwar 1994; Tiwari & Kaliamoorthy 2018). This region has a semi-arid climate. The average temperature during winter reaches a minimum of 16°C and a maximum of 40°C during summer. It receives rainfall mainly during the north-east monsoon (October–December) and low rainfall from south-west monsoon (June–September), which ranges 750–800 mm (Shenoy et al. 2006). The study section of the river flows through valleys and forests, with the Cauvery Wildlife Sanctuary, Karnataka in the south and the dense reserve forests under Hosur Forest Division, Tamil Nadu in the north. Vegetation along the river section mainly consists of dry deciduous forest and

southern tropical dry thorn riverine forests (Baskaran et al. 2011).

Method

The entire survey which included reconnaissance and preliminary surveys followed by replication surveys for daytime and night spotlight surveys, were conducted over the course of four months (February–May 2019) during the dry season.

Reconnaissance and preliminary survey: These surveys were carried out over the 24-km river stretch to explore site characteristics and to collect adequate data for planning and survey design.

Daytime survey: The 24-km stretch of the river was divided into seven segments (Table 1) that served as seven different sites for temporal replicated surveys. Out of the 24-km of total river section, a 4.2-km segment was not surveyed due to insufficient water level in the river to row the coracle (a small, rounded lightweight boat) and lack of accessibility for the survey team to walk due to dense thorn forest along the river. Hence, the survey was carried out at the remaining six replicated sites (six river segments). Each site was surveyed on five occasions. The daylight survey was taken place with a minimum of seven days and a maximum of 10 days' time space between each survey occasion. The surveys were carried out on foot along the river and by rowing coracle where riverbanks are inaccessible on foot. Teams of two to three observers recorded direct basking counts during maximum basking activity times, 0700–1000 h and 1500–1800 h (Venugopal & Prasad 2003). The survey team also searched for potential nests and nesting activities such as digging, presence of eggs or shells along the river banks. The locations of direct and indirect signs (scat,

© Naveen Yadav

Image 1. Mugger Crocodile *Crocodylus palustris*.

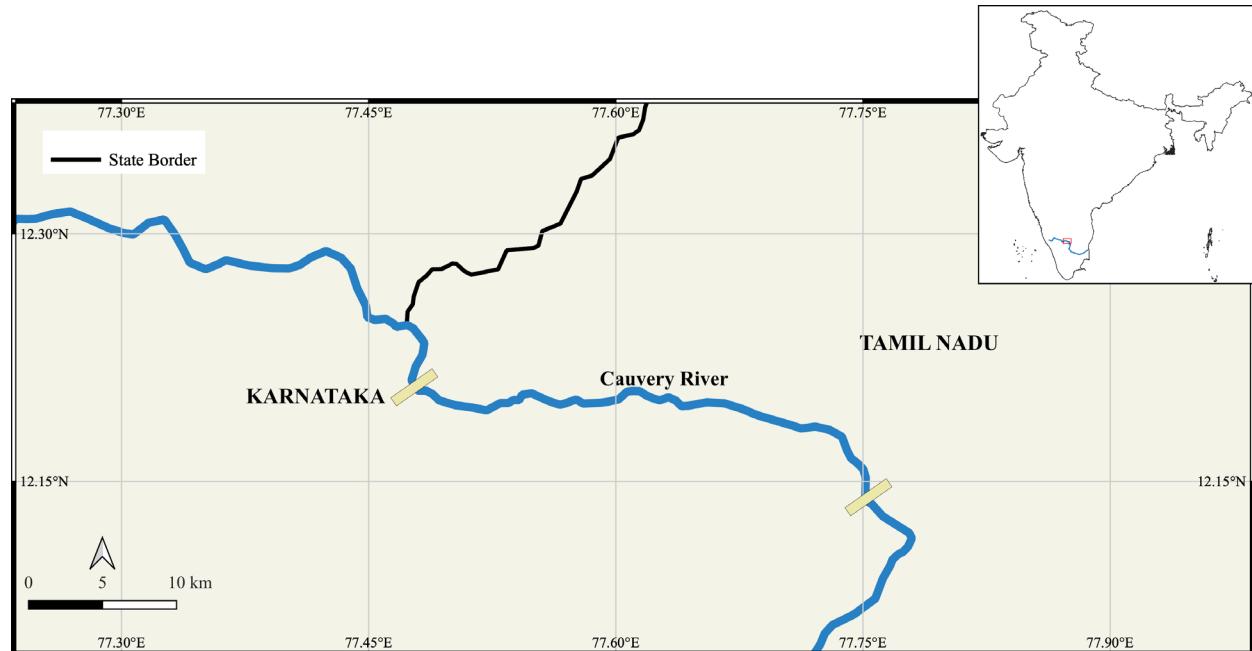


Figure 1. Cauvery river section (red box in inset map of India) where the study took place during February–May 2019.

spoor, basking and nest sites) of Muggers were recorded by using a GPS instrument (Garmin eTrex 20x). Animals were observed with Olympus binocular (10 x 50) and wherever possible images of Mugger and their habitat were recorded using a digital camera. The number of individuals detected in a given site were counted using standard monitoring techniques.

Spotlight survey: After completion of daytime replicated surveys, the same six sites (river segments) were used for conducting a night spotlight survey using coracles. All the six sites were surveyed at the same time by six different survey teams. Available spotlight survey procedure was carried out to perform night surveys (Messel et al. 1981; Bayliss 1987; Lentic & Connors 2006). At each segment of the river, all coracles were operated between 2000 h and 2300 h. Coracles were operated at about 2 m from and parallel to the shoreline, and one observer was stationed at the front in each coracle in addition to a fellow observer to record the data. A speed of 5–8 km/hr was maintained. A high-powered (1000+ lumen) searchlight was used by the observer during the survey, which produced a readily detectable eye shine up to a distance of approximately 100 m. When an eye shine was spotted, the Mugger was approached closer to obtain a size estimate. We assigned four size classes to the Muggers based on Andrews (1999): hatchlings (<0.5 m TL), small/juveniles (0.5–1.0 m TL), medium/subadults (1.0–1.5 m TL), and large/adults (>1.5 m TL). Unknown size classes when only eye shine was visible

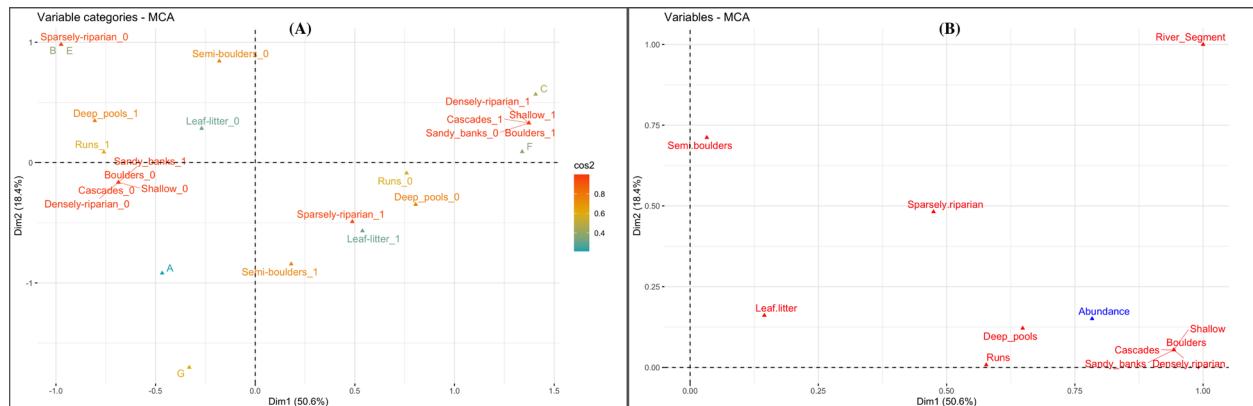
were categorized as eyes only (EO).

Measure of abundance: Appropriate measure of abundance was chosen instead of a total population count as not all mugger crocodiles present in the area were observed for each survey. For the daytime survey, N-mixture models were employed to estimate abundance based on repeated counts in a given site (Royle 2004; Dail & Madsen 2011). Since capture and manipulating of individuals are not required in N-mixture models and they also allow collecting abundance information over larger areas compared to traditional techniques (Kéry et al. 2009; Griffiths et al. 2015). The lengths of the river segments (sites) were considered as a site level covariate, and the sampling hours were considered as observational covariates which were recorded during each survey occasion for each site. We used R package 'unmarked' for N-mixture modelling to estimate abundance (Fiske & Chandler 2011). However, because the night spotlight survey was conducted only once at all sites, we considered the total spotted individuals as a relative index of abundance for night spotlight survey (Bayliss 1987; Cherkiss et al. 2006; Fukuda et al. 2012).

Association and correlation: Multiple correspondence analysis (MCA) was carried out to measure the association among the habitat features and occurrence of Muggers. It is an adaptation of corresponding analysis to a data table containing more than two categorical variables (Greenacre & Blasius 2006). MCA can also

be seen as a generalisation of principal component analysis (PCA) when the variables to be analysed are categorical instead of quantitative (Abdi & Williams 2010). We specifically selected 10 categorical variables which were most dominant habitat features found in each river segment during the daytime surveys. We used R packages 'FactoMineR' for the MCA analysis and 'factoextra' for ggplot2-based visualization (Le et al. 2008; Wickham 2009; Kassambara & Mundt 2020).

All the map layouts were created using QGIS and Google Earth. Abundance and association measurements were carried out using open source software R v3.6.2 (R Core Team 2021).


RESULTS

We found 53 potential basking sites along the river section based on the frequent and numerous indirect signs, mainly spoors. During five repeated counts, we encountered a total of 45 Mugger Crocodiles by direct sighting which includes 12 adults (>1.5 m TL), nine sub-adults (1.0–1.5 m TL), 15 juveniles (0.5–1.0 m TL), and nine without any concrete size estimate. In N-mixture models, we selected the model with Poisson error, as it showed AIC values lower than the respective zero-inflated Poisson (ZIP) model (86.97 vs. 88.98). Assuming homogeneous density in the survey area, N-mixture models estimated an average mugger crocodile density of 2.05 individuals per kilometre. During daytime ground based surveys two nests were also observed very close to the riverbank on the sandy substrate (Image 2). At

Table 1. Type of association observed for Mugger Crocodiles with respect to the habitat.

River segment	Segment length (km)	Topography	Habitat type	Type of association*
Dabaguli–Dolamathi	3.6	Semi-boulders, mud and sparse riparian cover	Runs, pools and cascades	+
Dolamathi–Uganiyam	2.7	Boulders, semi boulders, sand, leaf litter, and riparian cover	Runs, pools and riffles	+
Uganiyam–Thumbaguli	3.7	Semi-boulders, Sand, and sparse riparian cover	Runs, pools and riffles	–
Thumbaguli–Upstream Raasimalal (Unsurveyed segment)	4.2	Boulders, bed rock, leaf litter, and dense riparian cover	Shallow river depth with cascades and rapids	NA
Upstream–Raasimalal	1.7	Semi-boulders, bed rock, mud, and riparian cover	Runs, pools and riffles	+
Raasimalal–Biligundlu	5.7	Semi-boulders, sand, mud, leaf litter, and dense riparian cover	Shallow river depth with runs and riffles	–
Biligundlu–Moslaemaduvu	2.4	Boulders, semi-boulders, mud, and less riparian cover	Runs, pools and cascades	+
Total	24			

‘+’ shows positive and ‘–’ shows negative association

Figure 2. A—Quality of representation (squared cosine – \cos^2) showing the degree of association between variable categories | B—Correlation between variables and MCA principal dimensions.

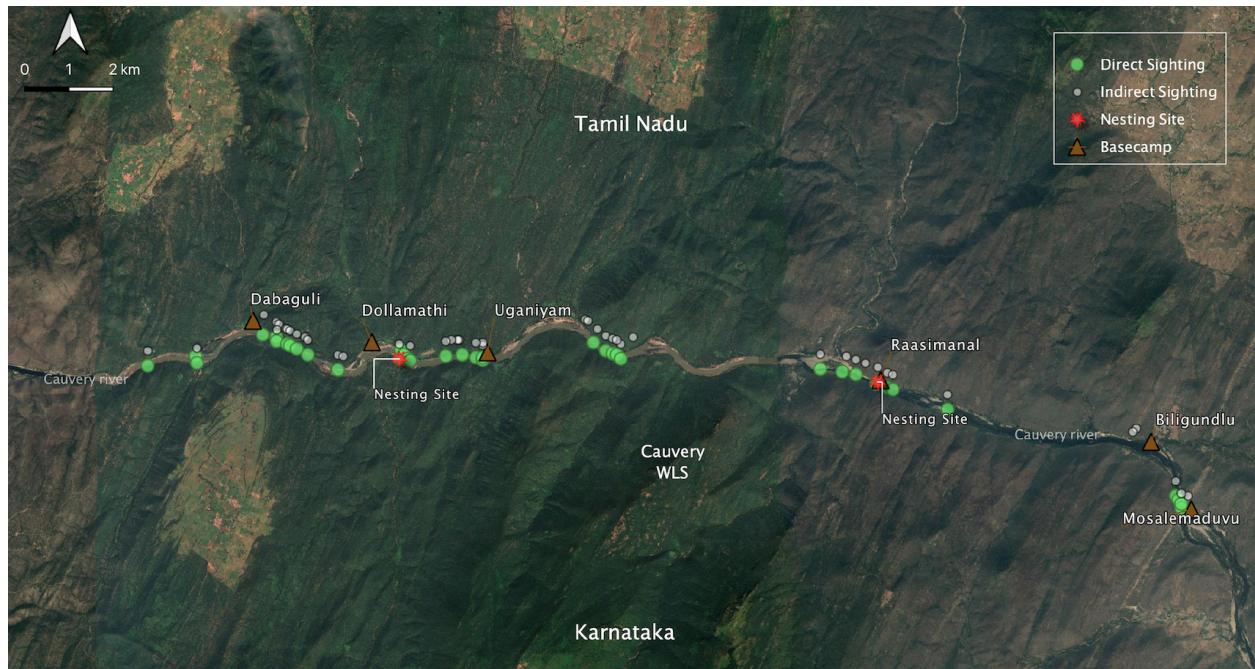


Image 2. Spatial distribution of direct and indirect sightings of Mugger Crocodiles with the nesting sites recorded during day time survey.

Image 3. Spatial distribution of Mugger Crocodiles during night time spotlight survey.

the first nest, 13 empty eggshells, of which two had failed to hatch were observed. Near the first nest, three hatchlings (<0.5 m TL) were also observed in water and at the second nest, 11 freshly hatched eggs shells, and five hatchlings with an adult crocodile were spotted in the river. It should be borne in mind that all the available nests in the study site are not represented in

our nesting observations, as search effort for nests was not standardized among the river section and observers.

Night spotlight survey yielded direct sightings of 54 Muggers which includes 14 adults, seven sub-adults, five juveniles, and 28 with eyes only (EO) recorded in the targeted river section (Image 3). A relative abundance of 2.25 individuals per kilometre was obtained during

spotlight survey, comparatively higher than the daytime survey. We also observed the basking banks with deep-water river segments as the key determinant explaining the relatively high occurrences of mugger crocodiles. MCA biplots also displayed greater squared cosine values for deep pools, sandy banks and runs which shows the higher quality of representation (Figure 2A). And while comparing the river segments with shallow depth and dense riparian cover, the availability of sandy banks for basking alongside deep water pools revealed a substantially higher abundance as shown in Figure 2B, which also complemented with our field observations.

In addition to Mugger various other threatened species like Smooth-coated Otter *Lutrogale perspicillata*, Leith's Softshell Turtle *Nilssonia leithii*, Asian Elephant *Elephas maximus*, Sloth Bear *Melursus ursinus*, and Lesser Fish Eagle *Icthyophaga humilis* were also observed a few occasions in the study area. Most of the river stretch was facing unrestricted fishing pressure. Human activities and livestock along the river stretch appeared to negatively influence the use of areas by Mugger. During the entire study period, no crocodile attacks were observed.

DISCUSSION

The present study with successful nesting and hatching records suggested the presence of a potential breeding population of Mugger along the targeted stretch of the river. It also demonstrated that Mugger preferred river sections with a wider width and greater depth while avoiding shallow regions with high rapids. Spotlight survey was found to be more effective out of the two survey strategies adopted in this study, yet the detection probability of hatchlings/ yearlings and animals resting in vegetation along the riverbank reduced significantly when compared with the daylight surveys (Woodward & Marion 1978; Bayliss 1987). However, the study shows that the spotlight survey can be an effective tool for monitoring crocodilian populations over the long term (Messel et al. 1981; Hutton & Woolhouse 1989; Webb et al. 2000; Fujisaki et al. 2011; Fukuda et al. 2012). It is expected that more systematic surveys will detect more populations across the Cauvery river ecosystem. An earlier study by Whitaker & Andrews (2003) also showed a stable population of Mugger in upper region (around 150 km upstream from the present study site) of river Cauvery in Ranganathittu Bird Sanctuary, Karnataka. A systematic multiscale study of Mugger, associated species, and their habitat in the entire stretch of river

will yield valuable information regarding the population dynamics and ecology of the species in the Cauvery river ecosystem. There is also a need to have local awareness campaigns focusing on the vulnerability and ecological values of crocodiles (Brito et al. 2011).

REFERENCES

Abdi, H. & L.J. Williams (2010). Principal Component Analysis. *Wiley Interdisciplinary Reviews: Computational Statistics* 2: 433–459.

Andrews, H.V. (1999). Status and Distribution of the Mugger Crocodile in Tamil Nadu. *ENVIS Bulletin: Wildlife & Protected Areas* 2(1): 38–43.

Baskaran, N., K. Senthilkumar & M. Saravanan (2011). A new site record of the Grizzled Giant Squirrel *Ratufa macroura* (Pennant, 1769) in the Hosur forest division, Eastern Ghats, India and its conservation significance. *Journal of Threatened Taxa* 3(6): 1837–1841. <https://doi.org/10.11609/jott.o2632>

Bayliss, P. (1987). Survey methods and monitoring within crocodile management programmes, pp. 157–175. In: Webb, G.J.W., S.C. Manolis & P.J. Whitehead (eds.). *Wildlife Management: Crocodiles and Alligators*. Surrey Beatty and Sons Pty, Sydney.

Brito, J.C., F. Martínez-Freiría, P. Sierra, N. Sillero & P. Tarroso (2011). Crocodiles in the Sahara Desert: An Update of Distribution, Habitats and Population Status for Conservation Planning in Mauritania. *PloS ONE* 6(2): e14734. <https://doi.org/10.1371/journal.pone.0014734>

Cherkiss, M.S., F.J. Mazzotti & K.G. Rice (2006). Effects of shoreline vegetation on visibility of American crocodiles (*Crocodylus acutus*) during spotlight surveys. *Herpetological Review* 37(1): 37–40.

Choudhury, B.C. & A. de Silva (2013). *Crocodylus palustris*. 2013 IUCN Red List of Threatened Species: e.T5667A3046723. Downloaded on 14 July 2021. <https://doi.org/10.2305/IUCN.UK.2013-2.RLTS.T5667A3046723.en>

Da Silva, A. & J. Lenin (2010). Mugger Crocodile *Crocodylus palustris*. In: Manolis S.C. & C. Stevenson (eds.). *Crocodiles. Status Survey and Conservation Action Plan*. 3rd Edition. Crocodile Specialist Group, Darwin, Australia.

Dail, D. & L. Madsen (2011). Models for estimating abundance from repeated counts of an open metapopulation. *Biometrics* 67: 577–587. <https://doi.org/10.1111/j.1541-0420.2010.01465.x>

Daniels, R.J.R. & N.M. Ishwar (1994). Rarity and the herpetofauna of the Southern Eastern Ghats, India. *Cobra* 16: 2–14.

Fiske, I. & R. Chandler (2011). unmarked: An R Package for Fitting Hierarchical Models of Wildlife Occurrence and Abundance. *Journal of Statistical Software* 43(10): 1–23. <http://www.jstatsoft.org/v43/i10/>

Fujisaki, I., F.J. Mazzotti, R.M. Dorazio, K.G. Rice, M. Cherkiss & B. Jeffery (2011). Estimating trends in alligator populations from nightlight survey data. *Wetlands* 31: 147–155. <https://doi.org/10.1007/s13157-010-0120-0>

Fukuda, Y., W. Saalfeld, G. Webb, C. Manolis & R. Risk (2012). Standardised method of spotlight surveys for crocodiles in the tidal rivers of the Northern Territory, Australia. *Northern Territory Naturalist* 24(1): 14–32.

Greenacre, M. & J. Blasius (eds.) (2006). *Multiple Correspondence Analysis and Related Methods*. Chapman and Hall/CRC, New York, 354pp. <https://doi.org/10.1201/9781420011319>

Griffiths, R.A., J. Foster, J.W. Wilkinson & D. Sewell (2015). Science, statistics and surveys: a herpetological perspective. *Journal of Applied Ecology* 52: 1413–1417. <https://doi.org/10.1111/1365-2664.12463>

Hutton, J.M. & M.E.J. Woolhouse (1989). Mark-recapture to assess factors affecting the proportion of a Nile crocodile population seen during spotlight counts at Ngezi, Zimbabwe, and the use of spotlight counts to monitor crocodile abundance. *Journal of Applied Ecology*

26(2): 381–395. <https://doi.org/10.2307/2404068>

Kassambara, A. & F. Mundt (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R package version 1.0.7.

Kéry, M., R.M. Dorazio, L. Soldaat, A. Van Strien, A. Zuiderwijk, & J.A. Royle (2009). Trend estimation in populations with imperfect detection. *Journal of Applied Ecology* 46: 1163–1172. <https://doi.org/10.1111/j.1365-2664.2009.01724.x>

Lentic, M. & G. Connors (2006). Changes in the distribution and abundance of saltwater crocodiles (*Crocodylus porosus*) in the upstream, freshwater reaches of rivers in the Northern Territory, Australia. *Wildlife Research* 33(7): 529–538. <https://doi.org/10.1071/WR05090>

Le, S., J. Josse & F. Husson (2008). FactoMineR: An R Package for Multivariate Analysis. *Journal of Statistical Software* 25(1): 1–18.

Messel, H., G.C. Vorlicek, A.G. Wells & W.J. Green (1981). *Surveys of Tidal River Systems in the Northern Territory of Australia and their Crocodile Populations*. Monograph: Volume 1. The Blyth-Cadell River Systems Study and the Status of *Crocodylus porosus* in Tidal Waterways of Northern Australia. Methods for Analysis, and Dynamics of a Population of *C. porosus*. Pergamon Press, Sydney.

R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rao, R.J. & B.C. Choudhury (1993). Sympatric distribution of Gharial *Gavialis gangeticus* and Mugger *Crocodylus palustris* in India. *Journal of the Bombay Natural History Society* 89(3): 312–315.

Royle, J.A. (2004). N-mixture models for estimating population size from spatially replicated counts. *Biometrics* 60: 108–115.

Shenoy, K., S. Varma & K.V.D. Prasad (2006). Factors determining habitat choice of the smooth-coated otter, *Lutra perspicillata* in a South Indian river system. *Current Science* 91(5): 637–643.

Singh, L.A.K. (1999). Significance and achievements of the Indian Crocodile Conservation Project. *ENVIS Bulletin: Wildlife & Protected Areas* 2(1): 10–16.

Tiwari, U. & R. Kaliamoorthy (2018). Floristic Diversity and Vegetation Analysis of Plants from Various Forest Types in Hosur Forest Division, Tamil Nadu, Southern India. *Notulae Scientia Biologicae* 10(4): 597–606.

Venugopal, D. & K.V.D. Prasad (2003). Basking Behavior and Survey of Marsh Crocodiles *Crocodylus palustris* in Ranganthittu Bird Sanctuary, Karnataka, India. *Hamadryad* 27(2): 241–247.

Vyas, R. (2012). Current status of Marsh Crocodiles *Crocodylus palustris* (Reptilia: Crocodylidae) in Vishwamitri River, Vadodara City, Gujarat, India. *Journal of Threatened Taxa* 4(14): 3333–3341. <https://doi.org/10.11609/jott.02977>

Webb, G.J.W., A.R.C. Britton, S.C. Manolis, B. Ottley & S. Stirrat (2000). The recovery of *Crocodylus porosus* in the Northern Territory of Australia: 1971–1998, pp. 195–234. In: Crocodiles. Proceedings of the 15th Working Meeting of the IUCN-SSC Crocodile Specialist Group, IUCN, Gland, Switzerland.

Whitaker, R. (1987). The management of crocodilians in India, pp. 63–72. In: Webb, G.J.W., S.C. Manolis & P.J. Whitehead (eds.). *Wildlife Management: Crocodiles and Alligators*. Surrey Beatty and Sons Pty, Sydney.

Whitaker, R. & H.V. Andrews (2003). Crocodile conservation, eastern Asia region: An update. *Journal of the Bombay Natural History Society* 100: 432–445.

Whitaker, R. & Z. Whitaker (1989). Ecology of Mugger Crocodile, pp. 276–297. In: *Crocodiles. Their Ecology, Management and Conservation*. Crocodile Specialist Group. IUCN, Gland, Switzerland.

Wickham, H. (2009). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York.

Woodward, A.R. & W.R. Marion (1978). An evaluation of factors affecting night-light counts of alligators. Proceedings of the Annual Conference South eastern Association Fish and Wildlife Agencies 32: 291–302.

Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lionel Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kuri R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith W. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2019–2021

Due to paucity of space, the list of reviewers for 2018–2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:

The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road,
Saravanampatti, Coimbatore, Tamil Nadu 641035, India
ravi@threatenedtaxa.org

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

OPEN ACCESS

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under [Creative Commons Attribution 4.0 International License](#) unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

March 2022 | Vol. 14 | No. 3 | Pages: 20703–20810

Date of Publication: 26 March 2022 (Online & Print)

DOI: [10.11609/jott.2022.14.3.20703-20810](https://doi.org/10.11609/jott.2022.14.3.20703-20810)

www.threatenedtaxa.org

Article

Distribution and habitat-use of Dhole *Cuon alpinus* (Mammalia: Carnivora: Canidae) in Parsa National Park, Nepal

– Santa Bahadur Thing, Jhamak Bahadur Karki, Babu Ram Lamichhane, Shashi Shrestha, Uba Raj Regmi & Rishi Ranabhat, Pp. 20703–20712

Communications

Habitat preference and population density of threatened Visayan hornbills *Penelopides panini* and *Rhabdotorrhinus waldeni* in the Philippines

– Andrew Ross T. Reintar, Lisa J. Paguntalan, Philip Godfrey C. Jakosalem, Al Christian D. Quidet, Dennis A. Warguez & Emelyn Peñaranda, Pp. 20713–20720

Nest colonies of Baya Weaver *Ploceus philippinus* (Linnaeus, 1766) on overhead power transmission cables in the agricultural landscape of Cuddalore and Villupuram districts (Tamil Nadu) and Puducherry, India

– M. Pandian, Pp. 20721–20732

Status and distribution of Mugger Crocodile *Crocodylus palustris* in the southern stretch of river Cauvery in Melagiris, India

– Rahul Gour, Nikhil Whitaker & Ajay Kartik, Pp. 20733–20739

Dragonflies and damselflies (Insecta: Odonata) of Jabalpur, Madhya Pradesh, India

– Ashish Tiple, Vivek Sharma & Sonali V. Padwad, Pp. 20740–20746

Spatial and temporal variation in the diversity of malacofauna from Aripal stream of Kashmir Himalaya, India

– Zahoor Ahmad Mir & Yahya Bakhtiyar, Pp. 20747–20757

A checklist of blue-green algae (Cyanobacteria) from Punjab, India

– Yadavinder Singh, Gurdarshan Singh, D.P. Singh & J.I.S. Khattar, Pp. 20758–20772

Short Communications

Breeding biology of Sri Lanka White-eye *Zosterops ceylonensis* (Aves: Passeriformes: Zosteropidae) in tropical montane cloud forests, Sri Lanka

– W.D.S.C. Dharmarathne, P.H.S.P. Chandrasiri & W.A.D. Mahaulpatha, Pp. 20773–20779

Two new species of army ants of the *Aenictus ceylonicus* group (Hymenoptera: Formicidae) from Kerala, India

– Anupa K. Antony & G. Prasad, Pp. 20780–20785

Addition of three new angiospermic taxa to the flora of Bangladesh

– M. Ashrafuzzaman, M. Khairul Alam & A.K.M. Golam Sarwar, Pp. 20786–20791

A new distribution record of *Memecylon clarkeanum* Cogn. (Melastomataceae) to Karnataka from Sharavathi river basin, central Western Ghats, India

– Malve Sathisha Savinaya, Jogattappa Narayana, Venkatarangaiah Krishna & Kalamanji Govindaiah Girish, Pp. 20792–20797

Notes

First record of Doherty's Dull Oakblue *Arhopala khamti* Doherty, 1891 from upper Assam, India

– Arun Pratap Singh, Pp. 20798–20800

A new species of *Pancratium* Dill. ex L. (Amaryllidaceae) from Eastern Ghats of India

– R. Prameela, J. Prakasa Rao, S.B. Padal & M. Sankara Rao, Pp. 20801–20804

***Tribulus ochroleucus* (Maire) Ozenda & Quezel (Zygophyllaceae) - a new addition to the flora of India**

– K. Ravikumar, Umeshkumar Tiwari, Balachandran Natesan & N. Arun Kumar, Pp. 20805–20807

Abnormalities in the female spikelets of *Coix lacryma-jobi* L. (Poaceae) India

– Nilesh Appaso Madhav & Kumar Vinod Chhotupuri Gosavi, Pp. 20808–20810

Publisher & Host

