
Building evidence for conservation globally  
**Journal of  
Threatened  
TAXA**



10.11609/jott.2022.14.9.21751-21902  
www.threatenedtaxa.org

26 September 2022 (Online & Print)  
14(9): 21751-21902  
ISSN 0974-7907 (Online)  
ISSN 0974-7893 (Print)

Open Access





Publisher

**Wildlife Information Liaison Development Society**[www.wild.zooreach.org](http://www.wild.zooreach.org)

Host

**Zoo Outreach Organization**[www.zooreach.org](http://www.zooreach.org)

No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti,

Coimbatore, Tamil Nadu 641035, India

Ph: +91 9385339863 | [www.threatenedtaxa.org](http://www.threatenedtaxa.org)Email: [sanjay@threatenedtaxa.org](mailto:sanjay@threatenedtaxa.org)**EDITORS****Founder & Chief Editor****Dr. Sanjay Molur**Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),  
12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, India**Deputy Chief Editor****Dr. Neelesh Dahanukar**

Noida, Uttar Pradesh, India

**Managing Editor****Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, India**Associate Editors****Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India**Dr. B.A. Daniel**, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India**Editorial Board****Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

**Prof. Mewa Singh Ph.D., FASc, FNA, FNASc, FNAPsy**

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

**Stephen D. Nash**

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

**Dr. Fred Pluthero**

Toronto, Canada

**Dr. Priya Davidar**

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

**Dr. Martin Fisher**

Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK

**Dr. John Fellowes**

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

**Prof. Dr. Mirco Solé**

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

**Dr. Rajeev Raghavan**

Professor of Taxonomy, Kerala University of Fisheries &amp; Ocean Studies, Kochi, Kerala, India

**English Editors****Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2019–2021****Fungi****Dr. B. Shivaraju**, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Plants****Dr. G.P. Sinha**, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinando Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Kadoorie Farm and Botanic Garden Corporation, Hong Kong S.A.R., China**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantpur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjani Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasimhan**, Botanical Survey of India, Howrah, India**Dr. Larry R. Nobile**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Baños, Laguna, Philippines**Dr. P.A. Sinu**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India**Invertebrates****Dr. R.K. Avasthi**, Rohtak University, Haryana, India**Dr. D.B. Bastawde**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of Natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, Bangladesh**Mr. Jatishwar Singh Irungbam**, Biology Centre CAS, Brno, Czech Republic.**Dr. Ian J. Kitching**, Natural History Museum, Cromwell Road, UKFor Focus, Scope, Aims, and Policies, visit [https://threatenedtaxa.org/index.php/JoTT/aims\\_scope](https://threatenedtaxa.org/index.php/JoTT/aims_scope)For Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit [https://threatenedtaxa.org/index.php/JoTT/policies\\_various](https://threatenedtaxa.org/index.php/JoTT/policies_various)

continued on the back inside cover

Cover: *Pipistrellus tenuis* recorded during the small mammalian fauna study, Manipur, India. © Uttam Saikia.



## Conservation of Tiger *Panthera tigris* in Nepal: a review of current efforts and challenges

Pramod Ghimire 

Agriculture and Forestry University Faculty of Forestry, Hetauda, Bagmati Province, Nepal  
pghimire@afu.edu.np

**Abstract:** The Tiger *Panthera tigris* is one of the most charismatic and well known Asian big cats. In the lowlands of Nepal, Tigers along with the Greater One-Horned Rhinoceros *Rhinoceros unicornis* and the Asiatic Elephant *Elephas maximus* serve as flagship species gathering global conservation attention. Current surveys estimate a population of 235 tigers in Nepal. Tigers in Nepal are strictly protected in five protected areas located in the lowlands and their adjoining forest areas which cover 7,668.20 km<sup>2</sup>. However, over the last century, tiger population and their distribution range drastically declined with the species heading towards extinction. The long-term survival of this charismatic species is challenging largely due to the loss and fragmentation of habitat, climate change, increasing human-wildlife interface and poaching for illegal trade of body parts. In response to this, the Government of Nepal along with conservation agencies and local communities have proceeded to execute various conservation initiatives both at national and international level. This paper tries to scrutinize the current status of tiger population, conservation efforts, and existing challenges to conserve tiger species in Nepal.

**Keywords:** Asian big cat, charismatic species, climate change, conservation efforts, flagship species, fragmentation of habitat, illegal trade, poaching, population.

**Editor:** Priya Davidar, Sigur Nature Trust, Nilgiris, India.

**Date of publication:** 26 September 2022 (online & print)

**Citation:** Ghimire, P. (2022). Conservation of Tiger *Panthera tigris* in Nepal: a review of current efforts and challenges. *Journal of Threatened Taxa* 14(7): 21769–21775.  
<https://doi.org/10.11609/jott.7011.14.9.21769-21775>

**Copyright:** © Ghimire 2022. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

**Funding:** None.

**Competing interests:** The author declares no competing interests.

**Author details:** Pramod Ghimire (a PhD scholar) is highly motivated forestry scientist with 10+ years of experience in forestry research and development. He is currently serving as Assistant Professor at Agriculture and Forestry University, Faculty of Forestry, Hetauda, Nepal. Formerly, he has also served as a Ranger at Department of Forest, Ministry of Forest and Environment, Government of Nepal.

**Acknowledgements:** The author also acknowledges feedback from the anonymous referees and the editor of this journal, which helped improve the quality of the manuscript.

## INTRODUCTION

The Tiger *Panthera tigris* is a keystone species, crucial in maintaining the integrity of the ecosystems in which it thrives. It is one of the biggest and most fearsome predators in the world (Dhakal et al. 2014; DNPWC 2018). Historically, Tigers existed as nine subspecies, three of which, i.e., the Javan Tiger *Panthera tigris sondaica*, the Caspian Tiger *P. t. virgat*), and the Bali Tiger *P. t. balica*, are now considered extinct and a fourth, the South-China Tiger *P. t. amoyensis* is most likely extinct in the wild. Today the existing subspecies include the Bengal Tiger *P. t. tigris*, Indochinese Tiger *P. t. corbettii*, Sumatran Tiger *P. t. sumatrae*, Siberian Tiger *P. t. altaica*, and the Malayan Tiger *P. t. jacksoni* (Goodrich et al. 2015). However, a recent taxonomic revision by the IUCN Cat Specialist Group grouped the extant tigers into two sub species; *Panthera tigris tigris* distributed in mainland Asia, including India, Nepal, Bhutan, China, Russia, Indochina, and the Malay Peninsula and *Panthera tigris sondaica* found in Sumatra and formerly Java and Bali (Kitchener et al. 2017).

Tigers occupy a variety of different habitats which include the tropical rainforests of Sumatra, mangrove swamps of the Sunderbans of Bangladesh and western India, tropical forests and grasslands of Nepal and India, forests of Bhutan and the temperate regions of eastern Russia (GTIS 2010; DNPWC 2016, 2018) thus displaying ubiquity and adaptability across a wide range of habitats. That being said, tropical forests are considered to be the main habitat for tigers across their entire range. Just over a century ago, there were as many as 100,000 tigers living in the wild. At present, however, there are less than 5,000 wild tigers that remain (Table 1) and their range has reduced by 93% from 1990s to 2000s (Dinerstein et al. 2007; GTF 2016). Currently, suitable habitat for wild tigers covers about 1.2 million km<sup>2</sup> which has been categorized to include 76 tiger conservation landscapes (TCLs) across 13 tiger range countries (TRCs): Nepal, Bangladesh, Bhutan, Cambodia, China, India, Indonesia, Lao PDR, Malaysia, Myanmar, Russia, Thailand, and Vietnam (GTIS 2010).

The Bengal Tiger is the most abundant sub-species native to the Indian subcontinent including India, Nepal, Bangladesh, Bhutan, and western Myanmar. The population estimate of this sub-species currently holds at approximately 3,389 individuals (Table 1). In Nepal, tigers are distributed among five protected areas across the Terai and Churia habitats within the Terai Arc Landscape (Dhakal et al. 2014; DNPWC 2018). The tiger census conducted in 2018 estimates a population

of 235 adult tigers in Nepal (DNPWC 2018). Wild Tiger populations continue to decline due to habitat loss and degradation, prey depletion, retaliatory killing of tigers and poaching for illegal trade (Ripple et al. 2014). Therefore, to conserve this species, in 2010, at the Tiger Summit in St. Petersburg, Russia, Nepal and 12 other countries with wild tiger populations committed to double their wild tiger numbers (TX2 goal) by 2022 (GTF 2016). Owing to this, various conservation initiatives were undertaken both at national and international level which resulted in an increase in tiger population especially in Indian subcontinent. Yet, the long-term survival of this endangered wildlife species remains a challenging task. It is crucial now more than ever, for Nepal to execute pertinent actions and strategies for the long-term conservation of this species. In this context, the current paper intends to present the current status and distribution of tiger population in Nepal. Moreover, this paper also strives to illustrate the conservation efforts and its related challenges to conserve this iconic species in a national context.

### Tiger population status and tiger habitats in Nepal

Tigers in Nepal are distributed across the lowlands of Terai and Churia habitats within the Terai Arc Landscape (TAL). At present, the tiger distribution in Nepal is more or less restricted to five protected areas of the TAL and their adjoining forest areas (Figure 1) in three isolated sub-populations, viz.: i) Parsa-Chitwan Complex (Barandabhar corridor and protected forest; Parsa National Park (PNP) and Chitwan National Park (CNP)); ii) Banke-Bardia Complex (Kamdi corridor, Karnali corridor, Khata corridor and protected forest; Banke National Park (BaNP) and Bardia National Park (BNP)); and iii) Kailali-Kanchanpur Complex (Basanta corridor and Protected forest, Laljhadi-Mohana corridor and Protected forest, Brahmaudev corridor and Shuklaphanta National Park (ShNP) (DNPWC 2018).

The tiger census of 1995/1996 estimated a total of 93 to 97 breeding adult tigers in Nepal (DNPWC 2008). In the 1999/2000 census the population was estimated around 98 to 123 breeding adults showing some growth from the previous count (DNPWC 2008). But in 2007, the population was estimated at around 105 to 123 individuals showing no signs of growth, and the cause was attributed to increased poaching (DNPWC 2008; NTRP 2010). It should be, however, noted that early tiger estimates were based largely on pugmark projection methods, which have been proven to be unreliable surveys (Karanth et al. 2003). But from 2009, tiger censuses have been based on standardized,

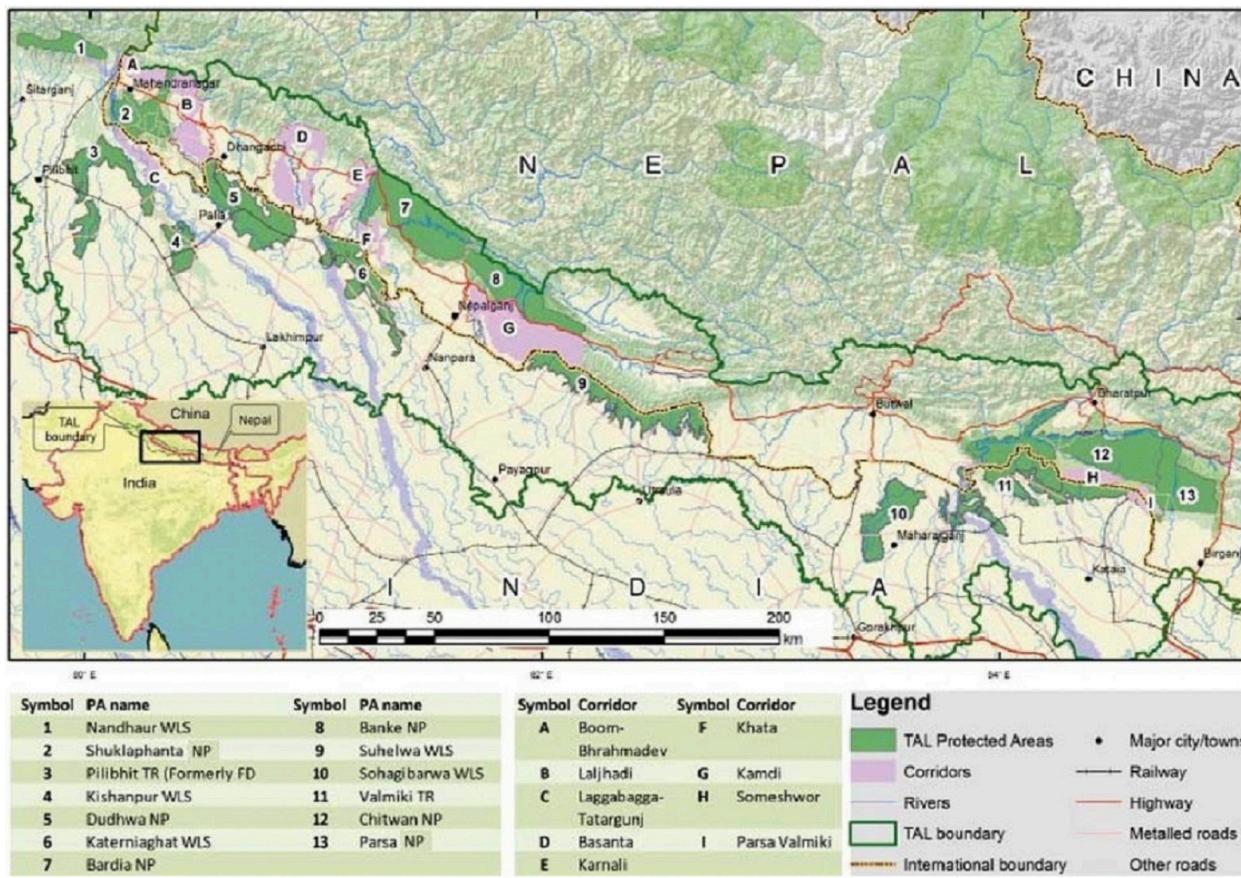



Figure 1. Map depicting tiger bearing protected areas and forest corridors in Nepal (adapted from DNPWC 2016).

science-based methods that use systematic camera trapping and transect surveys (DNPWC 2016). Thus the surveys conducted from 2009 onwards show an increase in tiger numbers in all protected areas, i.e., the population increased from 121 individuals in 2009 to 198 individuals in 2013 (Dhakal et al. 2014). The census of 2018 estimated that of the 235 individual tigers, 18 (16–24) tigers distributed in PNP and adjoining forests, 93 (89–102) tigers in CNP and adjoining forests, 21 (18–30) tigers in BaNP and adjoining forests, 87 (82–97) tigers in BNP and adjoining forests, and 16 (15–21) tigers in ShNP and adjoining forests (DNPWC 2018). The protected areas hosting tigers is presented in Table 2 along with their status. A national comparison indicates an approximate increase in the national tiger population by 19%, within the four-year period and a 94% increase within a period of nine years.

The largest population lives in Parsa-Chitwan Complex encompassing an area of 2,595 km<sup>2</sup> of prime lowland forest. Out of total habitat area, Parsa-Chitwan Complex encompasses 36.60% and Banke-Bardia complex and Suklaphanta Complex covers 41.60 % and 21.80 %, respectively (Table 2). Earlier information on

tiger distribution in Nepal has not been reported at elevations higher than the Siwalik Hills (about 1,500 m). But recently, on 13 April 2020, a tiger was spotted at an elevation of 2,500 m in the Mahabharat range of Dadeldhura (DFO 2020). This is the first ever recorded sighting of a tiger at such altitudes. It was sighted by a camera trap which was set up by the Division Forest Office to track the presence of wildlife movement in the area. Reports such as this opens up new avenues for research in Nepal. Furthermore, a tiger was recently captured at an elevation of 3,165 m by a camera trap in the mountain forests of Ilam district in eastern Nepal, the highest proven sighting of a big cat ever in Nepal (DNPWC 2020). This finding provides the encouragement for conservation officials to continue their determined efforts to save the iconic animal which is endangered globally.

#### Conservation efforts

Nepal's effort to strengthen tiger conservation efforts dates back to 1970s when a tiger ecology project was launched in Chitwan in 1972 (McDougal 1977; Smith 1993). Following the endorsement of National Park and

**Table 1. Current status of Tiger in tiger range countries.**

|    | Country                 | Year 2010   | Year 2015   | Year 2018   |
|----|-------------------------|-------------|-------------|-------------|
| 1  | Nepal                   | 155         | 198         | 235         |
| 2  | India                   | 1411        | 2246        | 2967        |
| 3  | Bangladesh              | 440         | 106         | 121         |
| 4  | Bhutan                  | 75          | 103         | 103         |
| 5  | Myanmar                 | 85          | 85          | NA          |
| 6  | China                   | 45          | 45          | 34          |
| 7  | Lao PDR                 | 17          | 17          | 2           |
| 8  | Thailand                | 200         | 200         | 189         |
| 9  | Vietnam                 | 10          | 10          | <5          |
| 10 | Cambodia                | 20          | 20          | 0           |
| 11 | Indonesia               | 325         | 325         | 371         |
| 12 | Malaysia                | 500         | 500         | 250         |
| 13 | Russia                  | 360         | 360         | 433         |
|    | <b>Total Population</b> | <b>3643</b> | <b>4215</b> | <b>4710</b> |

NA—Not available. Source: GTF 2016; Wang et al. 2016; Aziz et al. 2017; DNPWC 2018; Jhala et al. 2019.

Wildlife Conservation Act (NPWCA) and establishment of Chitwan National Park in 1973 as the first national park of Nepal was a milestone in the history of wildlife conservation in Nepal which was well backed up by establishing Department of National Parks and Wildlife Conservation in 1980 (DNPWC 2018). After that, four more national parks, i.e. BNP, ShNP, PNP, and BaNP were set up to protect tigers and their habitats (DNPWC 2016, 2018). Since then, placing strong anti-poaching measures in the protected areas, managing habitats and providing compensation for human loss has led to the recovery of wild tiger populations.

To address the growing issue of conflict between national parks and people, the Government of Nepal in 1996 introduced a conciliatory approach called as the Buffer Zone Management System (MoFSC 1996; Ghimire 2019). They aimed to establish buffer zones around the country's national parks and wildlife reserves with the objective of making local communities self-reliant on forest products through community forestry, while also creating other livelihood opportunities for them (MoFSC 1996; Dhakal et al. 2014; Bhattarai et al. 2019). In addition, a legal provision was made to plow back a major slice of the revenue earned as a consequence of buffer zone development activities (MoFSC 1996). Over the time, the approach employed for wildlife conservation changed from protective to participatory and from species to landscape conservation (Ghimire 2019). In response to this, the Terai Arc Landscape (TAL) programme was initiated in 2001 specially to

protect megafauna like tigers, rhinos and elephants. This programme is recognized by the Governments of both Nepal and India. The TAL covers an area of 51,002 km<sup>2</sup> which extends from Nepal's Bagmati River in the east to India's Yamuna River in the west. This landscape is identified as prime habitat of tiger population in Nepal (MoFSC 2015).

Nepal also set up strong legal provisions to control wildlife crimes particularly for protected mammals like tigers, rhinos, elephants, and snow leopards. In Nepal, tigers are strictly protected under the National Parks and Wildlife Conservation Act. For offenders and accomplices convicted of poaching and illegal trade of tiger and its body parts the Wildlife Conservation Act provisions a fine ranging from NPR 500,000 to NPR 1,500,000, or 5 to 15 years of imprisonment, or both (GoN 1973). Nepal, is one of the 13 countries, that committed to the St. Petersburg Declaration of 2010 to double the tiger population by 2022 (GTIS 2010). To support this commitment the Government of Nepal also implemented a National Tiger Recovery Program 2010 under the framework of the Global Tiger Recovery Program (2010–2022) (Dhakal et al. 2014; DNPWC 2018). In addition, frameworks such as Nepal Biodiversity Strategy and Action Plan (2014–2020), Terai Arc Landscape (TAL) Strategy and Action Plan (2015–2025), Tiger Conservation Action Plan for Nepal (2016–2020), Forest Policy 2019 and Forest Act 2019 were developed and implemented to serve as a benchmark for tackling the priority threats to the nation's mega fauna like the tiger (DNPWC 2016; MoFE 2019). Furthermore, seven additional forest habitat corridors (Table 3) covering area 2,157 km<sup>2</sup> were declared between the years 2010 and 2020 to facilitate movement and dispersal of wildlife, especially tigers, rhinoceros, and elephants (MoFSC 2015; Wegge et al. 2018). The Government of Nepal has also been taking proactive actions in and around protected areas including buffer zones to engage with communities and organize community based initiatives. Altogether 331 community-based anti-poaching units (CBAPUs) have been established since 2015 in different parts of the country (DNPWC 2018). With all these efforts, Nepal is set to become the first country to double its tiger population by 2022 with an impressive population of 235 individuals. The Government of Nepal is at the forefront in improving habitats, managing critical transboundary linkages, adopting latest science and technology in research, combating wildlife crime and supporting the local communities to cope with tiger conflict.

**Table 2. The tiger bearing protected areas and tiger population.**

| Protected areas | Core area (Km <sup>2</sup> ) | Buffer zone area (Km <sup>2</sup> ) | Tiger population status |            |            |
|-----------------|------------------------------|-------------------------------------|-------------------------|------------|------------|
|                 |                              |                                     | 2009                    | 2013       | 2018       |
| PNP             | 627.39                       | 285.30                              | 4                       | 7          | 18         |
| CNP             | 952.63                       | 729.37                              | 91                      | 120        | 93         |
| BaNP            | 550                          | 343                                 | -                       | 4          | 21         |
| BNP             | 968                          | 507                                 | 18                      | 50         | 87         |
| ShNP            | 305                          | 243.5                               | 8                       | 17         | 16         |
| <b>Total</b>    |                              |                                     | <b>121</b>              | <b>198</b> | <b>235</b> |

**Table 3. Forest habitat corridors in Nepal.**

|    | Name of Forest Corridors                      | Area covered                       |                                |                          |
|----|-----------------------------------------------|------------------------------------|--------------------------------|--------------------------|
|    |                                               | Forest corridor (Km <sup>2</sup> ) | Impact zone (Km <sup>2</sup> ) | Total (Km <sup>2</sup> ) |
| 1. | Barandabhar Corridor and Protected Forest     | 148                                | 113                            | 261                      |
| 2. | Kamdi Corridor                                | 291                                | 159                            | 450                      |
| 3. | Karnali Corridor                              | 149                                | 78                             | 227                      |
| 4. | Khata Corridor and Protected Forest           | 74                                 | 128                            | 202                      |
| 5. | Basanta Corridor and Protected Forest         | 181                                | 471                            | 652                      |
| 6. | Laljhadi-Mohana Corridor and Protected Forest | 202                                | 153                            | 355                      |
| 7. | Brahmadev Corridor                            | 138                                | 10                             | 148                      |
|    | <b>Total</b>                                  | <b>1045</b>                        | <b>1112</b>                    | <b>2157</b>              |

Source: MoFSC 2015.

### Conservation challenges and threats

Despite conservation measures, tigers are highly threatened and still face the threat of extinction. Of the two sub-species only *Panthera tigris tigris* is reported to exist today and is 'Endangered' while *Panthera tigris sondaica* is considered extinct (Dhakal et al. 2014; Goodrich et al. 2015; Kitchener et al. 2017). Global tiger populations are under threat from habitat degradation, prey depletion, and poaching. Some of the major impediments to effectively conserve tigers in Nepal can be summarize as below:

- Habitat degradation and fragmentation
- Depletion of prey species
- Poaching and illegal trade of tiger body parts
- Human-tiger conflict
- Spread of invasive/alien species like *Mikania micrantha*, *Lantana camara*, *Chromolaena odorata* in tiger prey habitat particularly in PNP, CNP, and BNP.
- Climate change impacts

Rapidly growing human population coupled with unsustainable agricultural practices not only degrade

prime tiger habitat but also relegated the alarmingly dwindled tiger population to the confines of the wildlife habitats and adjoining forests. Settlements and linear infrastructure projects such as roads, railroads, transmission lines, irrigation canals, etc. are roughly planned inside protected areas or corridors which are responsible for fragmentation and degradation of tiger habitat in the country. The East-West highway passes through all five tiger bearing PAs of Nepal, which has resulted in the road kill of wildlife including tigers (DNPWC 2018; Bhattarai & Kindlmann 2018; Bhandari et al. 2019). Consequently, degradation and loss of tiger habitat resulted in low prey availability in both inside and outside PAs due to increased competition for food. On the other hand, continued illegal hunting outside PAs also contributes towards the depletion of natural prey-base. Moreover, collection of fodder, firewood, grasses from the forests, grazing, forest fire, and alien invasive species are major driving factors that lead to the degradation of tiger habitat. Similarly, floods, river cutting and pollution are other factors (Bhattachar & Kindlmann, 2018). Moreover, with the increase in number the problem of carrying capacity assessment is another growing issue for tiger conservation in Nepal (Bhandari et al. 2019).

Poaching and illegal trade of tigers and their body parts are a major threat to tiger populations globally. As Nepal is one of the countries that hosts a large wild tiger populations, it considered both a source and a transit point for illegal trade (Acharya 2003; DNPWC 2018). Despite the country's commitment to curb wildlife crime together with the success it achieved over the years in minimizing poaching and illegal trade, it still faces the problem of opportunistic poaching. In the past decade, skin from 49 tigers and 204 kg of tiger bones was seized, while 2,258 people were arrested in connection with their involvement in wildlife-related crime in the country (DNPWC 2018). Therefore, poaching and trade continues to be recognized as a major threat,

and combatting wildlife crime remains a priority. Furthermore, human-wildlife interface (like livestock depredation and human attack) has become one of the major threats to wildlife conservation. Conserving mega fauna like tigers in a human dominated landscape has become a challenging job. Today, *human-tiger incidents* have played a significant role in declining tiger populations globally (Gurung et al. 2008; Bhattacharai et al. 2019). The trend of human casualties has increased from an average of 1 to 7 persons per year from 1998 to 2006 (Gurung et al. 2008). Despite legal provision of a hefty fine or a sentence of up to 15 years in jail, or both, for killing a tiger and a compensation scheme for crop or livestock depredation, affected locals are sometimes known to resort to retaliatory killings. Habitat shrinkage, increasing human interface along the park boundaries, and increasing dependence on park/ reserves for forest resources are some of the major underlying causes of human-tiger interface.

Likewise, invasive-alien plant species such as *Mikania micrantha*, *Chromolaena odorata*, and *Lantana camera* in Parsa and Chitwan and *Lantana camara* in Bardia have heavily encroached most of potential tiger habitats and community forests in the buffer zones (DNPWC 2008; 2016). Water hyacinth (*Eichornia crassipes*) is prevalent in all lowland lakes, consequently this encourages siltation and dries up wetlands. Climate change is emerging as one of the prominent threats to biodiversity globally. Although information regarding the direct impact of climate change on wildlife species in the country is limited. However, climate change induced hazards including torrential precipitation, flash floods, prolonged droughts and frequent forest fires are observed to be major issues for tigers and their prey species (Thapa & Killy 2016; DNPWC 2018).

In spite of Nepal's favourable position on the road to achieving the TX2 goal and even with the upward growth rate of the global tiger population (after decades of constant decline), policy makers and experts at the third stock-taking conference held in Delhi in January 2019 (MoEFCC 2019) have pointed out that the goal of doubling the global tiger population by 2022 may be unrealistic. In 2010, global tiger population was pegged at 3,220 and at the halfway point in the timeline, i.e., 2016, it only reached 3890, below than the expected rate of increase (MoEFCC 2019). Therefore, the need for a differential approach to reach the TX2 goal was emphasized. Tiger and prey recovery is considered to be the main issue (globally) whereas in southern Asia, managing habitats outside the critical core tiger habitat through landscape approach, i.e., safeguarding

tiger corridors and community engagement to enhance livelihood opportunities for people is emerging as an area of focus. On that account, an essential challenge now lies in setting appropriate priorities to respond to the issue at hand.

## CONCLUSION

Nepal has been a leader in efforts to conserve tigers within its own territory and has won widespread praise from the international arena as well. The result shows the country is close to doubling its tiger population and achieving the global commitment made in the 2010 St. Petersburg Summit in Russia. The success in tiger conservation is the result of the concerted efforts of government agencies, conservation organisations, donors and community-based organisations. The conservation policies and strategies are well implemented. This is evident when we work together, we can save the planet's wildlife, even species facing extinction. Yet, conservation in an ever changing world that demands long term persistent efforts. Despite successes, threats to tigers from poaching, human-tiger interface, climate change, habitat degradation and depletion of prey base due to unplanned developmental activities persist even today. Thus, learning from past failures, and reflecting on current success actions and strategies need to be adapted for the long-term survival of this valuable species. More than that, there is a need for massive public awareness about wildlife protection and involvement of local community in conservation strategies.

## REFERENCES

Aryal, R.S. (2003). Poaching: get a grip on it. *Himalayan Journal of Sciences* 1(2): 73. <https://doi.org/10.3126/hjs.v1i2.195>

Aziz, M.A., S. Tollington, A. Barlow, C. Greenwood, J.M. Goodrich, O. Smith, M. Shamsuddoha, M.A. Islam & J.J. Groombridge (2017). "Using non-invasively collected genetic data to estimate density and population size of tigers in the Bangladesh Sundarbans". *Global Ecology and Conservation* 12: 272–282. <https://doi.org/10.1016/j.gecco.2017.09.002>.

Bhandari, S., U.B. Shrestha & A. Aryal (2019). Increasing tiger mortality in Nepal: a bump in the road? *Biodiversity Conservation* 28: 4115–4118. <https://doi.org/10.1007/s10531-019-01849-x>

Bhattacharai, B.P. & P. Kindlmann (2018). Human Disturbance is the Major Determinant of the Habitat and Prey Preference of the Bengal Tiger (*Panthera tigris tigris*) in the Chitwan National Park, Nepal. *European Journal of Ecology* 4(1): 13–21.

Bhattacharai, B.R., W. Wright, D. Morgan, S. Cook & H.S. Baral (2019). Managing human-tiger conflict: lessons from Bardia and Chitwan National Parks, Nepal. *European Journal of Wildlife Research* 65: 34 <https://doi.org/10.1007/s10344-019-1270-x>

**DFO (2020).** Monthly Progress Report, April 2020. Divisional Forest Office, Dadeldhura district, Province 7, Government of Nepal. Retrieve from: <https://www.globaltimes.cn/content/1185674.shtml#:~:text=A%20tiger%20was%20spotted%20in,It's%20 definitely%20an%20achievement>

**Dhakal, M., M. Karki, S.R. Jnawali, N. Subedi, N.M.B. Pradhan, S. Malla, B.R. Lamichhane, C.P. Pokharel, G.J. Thapa, J.S.A. Oglethorpe, P.R. Bajracharya & H. Yadav (2014).** Status of Tigers and Prey in Nepal. Department of National Parks and Wildlife Conservation, Kathmandu, Nepal.

**Dinerstein, E., C. Loucks, E. Wikramanayake, J. Ginsberg, E. Sanderson, J. Seidensticker, J. Forrest, G. Bryja, A. Heydlauff, S. Klenzendorf, P. Leimgruber, J. Mills, T.G. O'Brien, M. Shrestha, R. Simons & M. Songer (2007).** The Fate of Wild Tigers. *BioScience* 57(6): 508–514. <https://doi.org/10.1641/B570608>

**DNPWC (2008).** Tiger Conservation Action Plan for Nepal 2008–2012. Government of Nepal, Ministry of Forests and Soil Conservation, Department of National Parks and Wildlife Conservation.

**DNPWC (2016).** Tiger Conservation Action Plan (2016–2020). Department of National Parks and Wildlife Conservation, Kathmandu, Nepal.

**DNPWC (2018).** Status of Tigers and Prey in Nepal. Department of National Parks and Wildlife Conservation & Department of Forests and Soil Conservation. Ministry of Forests and Environment, Kathmandu, Nepal.

**DNPWC (2020).** Press Release. First Bengal Tiger recorded at the highest-ever elevation in Nepal. Ministry of Forests and Environment. Department of National Parks and Wildlife Conservation, Kathmandu, Nepal.

**Ghimire, P. (2019).** Landscape Level Efforts to Biodiversity Conservation in Nepal: A Review of Current Approach and Lessons Learned. *Grassroots Journal of Natural Resources* 2(3): 16–24. <https://doi.org/10.33002/nr2581.6853.02032>

**GoN (1973).** National Park and Wildlife Conservation (NPWC) Act, 1973. The Nepal Law Commission, Government of Nepal, Kathmandu, Nepal.

**Goodrich, J., A. Lynam, D. Miquelle, H. Wibisono, K. Kawanishi, A. Pattanavibool, S. Htun, T. Tempa, J. Karki, Y. Jhala & U. Karanth (2015).** *Panthera tigris*. The IUCN Red List of Threatened Species: e.T15955A50659951. <https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T15955A50659951.en>

**Gurung, B., J.L.D. Smith, C. McDougal, J.B. Karki & A. Barlow (2008).** Factors associated with human-killing tigers in Chitwan National Park, Nepal. *Biological Conservation* 141: 3069–3078.

**GTF (2016).** Global Tiger Population Status April 2016. Global Tiger Forum, World Wide Fund for Nature (WWF), Switzerland.

**GTIS (2010).** Global Tiger Recovery Program 2010–2022. Global Tiger Initiative Secretariat. Washington, DC, U.S.A.

**Jhala, Y.V., Q. Qureshi & A.K. Nayak (eds.) (2019).** Status of tigers, co-predators and prey in India 2018. Summary Report. National Tiger Conservation Authority, Government of India, New Delhi & Wildlife Institute of India, Dehradun. TR No./2019/05.

**Karanth, K.U., J.D. Nichols, J. Seidenstricker, E. Dinerstein, J.L.D. Smith, C. McDougal, A.J.T. Johnsingh, R.S. Chundawat & V. Thapar (2003).** Science deficiency in conservation practice: the monitoring of tiger populations in India. *Animal Conservation* 6(2): 141–146.

**Kitchener, A.C., C. Breitenmoser-Würsten, E. Eizirik, A. Gentry, L. Werdelin, A. Wilting, N. Yamaguchi, A.V. Abramov, P. Christiansen, C. Driscoll, J.W. Duckworth, W.E. Johnson, S.J. Luo, E. Meijaard, P. O'Donoghue, J. Sanderson, K. Seymour, M. Bruford, C. Groves, M. Hoffmann, K. Nowell, Z. Timmons & S. Tobe (2017).** A revised taxonomy of the Felidae. The final report of the Cat Classification Task Force of the IUCN/SSC Cat Specialist Group. *Cat News Special Issue* 11: 80.

**McDougal, C. (1977).** *The Face of the Tiger*. Rivington Books, London, UK.

**MoEFCC (2019).** Press Information Bureau. Government of India. Ministry of Environment, Forest and Climate Change. International Stock Taking Conference on Tiger Conservation, New Delhi, India. Retrieved from 17<sup>th</sup> November 2020: <https://pib.gov.in/Pressreleaseshare.aspx?PRID=1561642>

**MoFSC (1996).** Buffer zone Management Regulation 1996. Ministry of Forests and Soil Conservation (MoFSC), Government of Nepal, Kathmandu.

**MoFSC (2015).** Strategy and Action Plan 2015–2025, Terai Arc Landscape, Nepal. Ministry of Forests and Soil Conservation, Singha Durbar, Kathmandu, Nepal.

**NTRP (2010).** National Tiger Recovery Program: TX2 by 2022 Nepal. Government of Nepal, MoFSC, Kathmandu, Nepal.

**Ripple, W.J., J.A. Estes, R.L. Beschta, C.C. Wilmers, E.G. Ritchie, M. Hebblewhite, J. Berger, B. Elmhausen, M. Letnic, M.P. Nelson, O.J. Schmitz, D.W. Smith, A.D. Wallach & A.J. Wirsing (2014).** Status and ecological effects of the world's largest carnivores. *Science* 343: 124148. <https://doi.org/10.1126/science.1241484>

**Smith, J.L.D. (1993).** The role of dispersal in structuring the Chitwan tiger population. *Behavior* 124: 165–195.

**Thapa, K. & M. Kelly (2016).** Density and carrying capacity in the forgotten tiger land: tiger in understudied Nepalese Churia. *Integrative Zoology* 12(3): 211–27. <https://doi.org/10.1111/1749-4877.12240>

**Wegge, P., S.K. Yadav & B.R. Lamichhane (2018).** Are corridors good for tigers *Panthera tigris* but bad for people? An assessment of the Khata corridor in lowland Nepal. *Oryx* 52(1): 35–45. <https://doi.org/10.1017/S0030605316000661>

**Wang, T., L. Feng, P. Mou, J. Wu, J.L. Smith, W. Xiao, H. Yang, H. Dou, X. Zhao, Y. Cheng, & B. Zhou (2016).** Amur tigers and leopards returning to China: direct evidence and a landscape conservation plan. *Landscape Ecology* 31(3): 491–503. <https://doi.org/10.1007/s10980-015-0278-1>.





Dr. George Mathew, Kerala Forest Research Institute, Peechi, India  
Dr. John Noyes, Natural History Museum, London, UK  
Dr. Albert G. Orr, Griffith University, Nathan, Australia  
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium  
Dr. Nancy van der Poorten, Toronto, Canada  
Dr. Karen Schnabel, NIWA, Wellington, New Zealand  
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India  
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India  
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India  
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India  
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India  
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India  
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain  
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong  
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India  
Dr. M. Nithyanandan, Environmental Department, La Al Al Kuwait Real Estate. Co. K.S.C., Kuwait  
Dr. Himender Bharti, Punjabi University, Punjab, India  
Mr. Purnendu Roy, London, UK  
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan  
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India  
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam  
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India  
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore  
Dr. Lionel Monod, Natural History Museum of Geneva, Genève, Switzerland.  
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India  
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil  
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany  
Dr. James M. Carpenter, American Museum of Natural History, New York, USA  
Dr. David M. Claborn, Missouri State University, Springfield, USA  
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand  
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil  
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India  
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia  
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia  
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA  
Dr. Priyadarsanan Dharma Rajan, ATREE, Bengaluru, India  
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia  
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia  
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.  
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan  
Dr. Keith V. Wolfe, Antioch, California, USA  
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA  
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic  
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway  
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India  
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India  
Dr. Priyadarsanan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

#### Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India  
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México  
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore  
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India  
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK  
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India  
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia  
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India  
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India  
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India  
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

#### Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India  
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

#### Reptiles

Dr. Gernot Vogel, Heidelberg, Germany  
Dr. Raju Vyas, Vadodara, Gujarat, India  
Dr. Pritpal S. Soorae, Environment Agency, Abu Dubai, UAE.  
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey  
Prof. Chandrashekher U. Rivonker, Goa University, Taleigao Plateau, Goa, India  
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India  
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

**Journal of Threatened Taxa** is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

#### Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia  
Mr. H. Biju, Coimbatore, Tamil Nadu, India  
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK  
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India  
Dr. J.W. Duckworth, IUCN SSC, Bath, UK  
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India  
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India  
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India  
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India  
Mr. J. Praveen, Bengaluru, India  
Dr. C. Srinivasulu, Osmania University, Hyderabad, India  
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA  
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia  
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel  
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands  
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK  
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK  
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India  
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia  
Dr. Simon Dowell, Science Director, Chester Zoo, UK  
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal  
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA  
Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia

#### Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy  
Dr. Anwaruddin Chowdhury, Guwahati, India  
Dr. David Mallon, Zoological Society of London, UK  
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India  
Dr. Angie Appel, Wild Cat Network, Germany  
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India  
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK  
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA  
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.  
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India  
Dr. Mewa Singh, Mysore University, Mysore, India  
Dr. Paul Racey, University of Exeter, Devon, UK  
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India  
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India  
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy  
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India  
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India  
Dr. Paul Bates, Harison Institute, Kent, UK  
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA  
Dr. Dan Challender, University of Kent, Canterbury, UK  
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK  
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA  
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India  
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal  
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia  
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

#### Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)  
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)  
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)  
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)  
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)  
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil  
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand  
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa  
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India  
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India  
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India  
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka  
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

#### Reviewers 2019–2021

Due to paucity of space, the list of reviewers for 2018–2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:  
The Managing Editor, JoTT,  
c/o Wildlife Information Liaison Development Society,  
No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road,  
Saravanampatti, Coimbatore, Tamil Nadu 641035, India  
ravi@threatenedtaxa.org

## Article

### Diversity, distribution, and abundance status of small mammalian fauna (Chiroptera: Rodentia: Eulipotyphla) of Manipur, India

– Uttam Saikia & A.B. Meetei, Pp. 21751–21768

### New records of odonates from Trongsa and Zhemgang, central Bhutan with a checklist of Jigme Singye Wangchuck National Park

– Mer Man Gurung, Cheten Dorji, Abir Man Sinchuri, Sanjiti K. Rai, Karma C. Dendup & Vincent J. Kalkman, Pp. 21836–21844

## Review

### Conservation of Tiger *Panthera tigris* in Nepal: a review of current efforts and challenges

– Pramod Ghimire, Pp. 21769–21775

### Land snails of Guwahati, Assam, India

– Girindra Kalita, Pp. 21845–21852

### Morphology characterization and phytochemical overview of the Moluccan Ironwood *Intsia bijuga* (Colebr.) Kuntze, a living collection of Purwodadi Botanic Garden, Indonesia

– Melisnawati H. Angio, Elga Renjana & Eloq Rifqi Firdiana, Pp. 21853–21861

## Communications

### Effects of visitor disturbance on tetrapod vertebrates in the Horton Plains National Park, Sri Lanka

– D.M.T. Dhananjani & W.A.D. Mahaulpatha, Pp. 21776–21785

### Woody plant wealth of Therikadu Reserve Forest, Tuticorin, India: a checklist

– V. Muneeswaran & M. Udayakumar, Pp. 21862–21869

### Population density and nesting behaviour of Indian Giant Squirrel *Ratufa indica* (Erxlebelin, 1777) in Bhimashankar Wildlife Sanctuary, Western Ghats of Maharashtra, India

– Ganesh Rathod, Erach Bharucha & Kranti Yardi, Pp. 21786–21796

### Invasive alien plant species of Hassan District, Karnataka, India

– G.M. Prashanth Kumar & Shiddamallayya Nagayya, Pp. 21870–21890

### First camera-trap confirmation of Tibetan Brown Bear *Ursus arctos pruinosus* Blyth, 1854 (Mammalia: Carnivora: Ursidae) with a review of its distribution and status in Nepal

– Madhu Chetri, Pp. 21797–21804

### Notes

#### First photographic evidence of the Binturong *Arctictis binturong* (Raffles, 1821) from Nepal

– Madhu Chetri, Purna Bahadur Ale, Tulasi Prasad Dahal & Karan Bahadur Shah, Pp. 21891–21894

#### First record of *Chlorophorus jucundus* (Perroud, 1855) (Coleoptera: Cerambycidae: Cerambycinae) from Maharashtra, India

– Yogesh K. Mane & Sunil M. Gaikwad, Pp. 21895–21897

#### First record of the swallowtail moth *Epiplema adamantina* Inoue, 1998 (Lepidoptera: Uraniidae: Epipleminae) from western Himalaya, India

– Lekhendra & Arun Pratap Singh, Pp. 21898–21899

#### Visceral tetrathyridiosis *Mesocestoides* sp. (Cestoda: Cyclophyllidea) in a wild Barn Owl *Tyto alba* - a first report and new host record

– P.G. Vimalraj & A. Latchumikanthan, Pp. 21900–21902

### Age estimation of Tiger *Panthera tigris* (Linnaeus, 1758) and Lion *Panthera leo* (Linnaeus, 1758) (Mammalia: Carnivora: Felidae): applicability of cementum annuli analysis method

– Vipin, Chandra Prakash Sharma, Vinita Sharma, Surendra Prakash Goyal, Heather Stevens & Sandeep Kumar Gupta, Pp. 21805–21810

### Hematological value of captive Asian Elephants *Elephas maximus* around Chitwan National Park, Sauraha, Nepal

– Roshan Ghimire, Sagar Regmi, Rakshya Shrestha, Amir Sadaula & Janardan Dev Joshi, Pp. 21811–21817

### Foraging strata and dietary preferences of fifteen species of babblers in Sarawak, Malaysia

– Jayasilan Mohd-Azlan, Attiqqah Fadziliah Sapian, Andrew Alek Tuen & Chong Leong Puan, Pp. 21818–21825

### Effects of wind farm on land bird composition at Kachchh District, Gujarat, India

– Selvaraj Ramesh Kumar, P.R. Arun & A. Mohamed Samsoor Ali, Pp. 21826–21835

## Publisher & Host

