

Building evidence for conservation globally

# Journal of Threatened TAXA

10.11609/jott.2023.15.6.23283-23462

[www.threatenedtaxa.org](http://www.threatenedtaxa.org)

26 June 2023 (Online & Print)


15(6): 23283-23462

ISSN 0974-7907 (Online)

ISSN 0974-7893 (Print)



Open Access





43/2 Varadarajulu Nagar, 5<sup>th</sup> Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India  
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India  
Ph: +91 9385339863 | [www.threatenedtaxa.org](http://www.threatenedtaxa.org)  
Email: sanjay@threatenedtaxa.org

**EDITORS****Founder & Chief Editor****Dr. Sanjay Molur**Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO),  
43/2 Varadarajulu Nagar, 5<sup>th</sup> Street West, Ganapathy, Coimbatore, Tamil Nadu 641006, India**Deputy Chief Editor****Dr. Neelesh Dahanukar**

Noida, Uttar Pradesh, India

**Managing Editor****Mr. B. Ravichandran**, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India**Associate Editors****Dr. Mandar Paingankar**, Government Science College Gadchiroli, Maharashtra 442605, India  
**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA  
**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India  
**Dr. B.A. Daniel**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India**Editorial Board****Dr. Russel Mittermeier**

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

**Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy**Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and  
Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary  
Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct  
Professor, National Institute of Advanced Studies, Bangalore**Stephen D. Nash**Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences  
Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA**Dr. Fred Pluthero**

Toronto, Canada

**Dr. Priya Davidar**

Sigur Nature Trust, Chadapatti, Mavinahalli PO, Nilgiris, Tamil Nadu 643223, India

**Dr. Martin Fisher**Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish  
Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK**Dr. John Fellowes**Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of  
Hong Kong, Pokfulam Road, Hong Kong**Prof. Dr. Mirco Solé**Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador  
do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000)  
Salobrinho, Ilhéus - Bahia - Brasil**Dr. Rajeev Raghavan**

Professor of Taxonomy, Kerala University of Fisheries &amp; Ocean Studies, Kochi, Kerala, India

**English Editors****Mrs. Mira Bhojwani**, Pune, India**Dr. Fred Pluthero**, Toronto, Canada**Mr. P. Ilangovan**, Chennai, India**Ms. Sindhura Stothra Bhashyam**, Hyderabad, India**Web Development****Mrs. Latha G. Ravikumar**, ZOO/WILD, Coimbatore, India**Typesetting****Mrs. Radhika**, ZOO, Coimbatore, India**Mrs. Geetha**, ZOO, Coimbatore India**Fundraising/Communications****Mrs. Payal B. Molur**, Coimbatore, India**Subject Editors 2020–2022****Fungi**

Dr. B. Shivaraju, Bengaluru, Karnataka, India  
Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India  
Dr. Vatsavaya S. Raju, Kakatiya University, Warangal, Andhra Pradesh, India  
Dr. M. Krishnappa, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India  
Dr. K.R. Sridhar, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India  
Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

**Plants**

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India  
Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India  
Dr. Shonil Bhagwat, Open University and University of Oxford, UK  
Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India  
Dr. Ferdinando Boero, Università del Salento, Lecce, Italy  
Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada  
Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines  
Dr. F.B. Vincent Florens, University of Mauritius, Mauritius  
Dr. Merlin Franco, Curtin University, Malaysia  
Dr. V. Irudayaraj, St. Xavier's College, Palayamkottai, Tamil Nadu, India  
Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India  
Dr. Pankaj Kumar, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA  
Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India  
Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India  
Dr. Vijayasankar Raman, University of Mississippi, USA  
Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantpur, India  
Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India  
Dr. Aparna Watve, Pune, Maharashtra, India  
Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China  
Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia  
Dr. M.K. Vasudeva Rao, Shiv Ranjani Housing Society, Pune, Maharashtra, India  
Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India  
Dr. Manda Datar, Agharkar Research Institute, Pune, Maharashtra, India  
Dr. M.K. Janarthanam, Goa University, Goa, India  
Dr. K. Karthigeyan, Botanical Survey of India, India  
Dr. Errol Vela, University of Montpellier, Montpellier, France  
Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India  
Dr. Larry R. Nobile, Montgomery Botanical Center, Miami, USA  
Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India  
Dr. Analinda Manila-Fajard, University of the Philippines Los Baños, Laguna, Philippines  
Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India  
Dr. Afroz Alam, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India  
Dr. K.P. Rajesh, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India  
Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA  
Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India  
Dr. A.G. Pandurangan, Thiruvananthapuram, Kerala, India  
Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India  
Dr. Kannan C.S. Warrier, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

**Invertebrates**

Dr. R.K. Avasthi, Rohtak University, Haryana, India  
Dr. D.B. Bastawade, Maharashtra, India  
Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India  
Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India  
Dr. Ansie Dippenaar-Schoeman, University of Pretoria, Queenswood, South Africa  
Dr. Rory Dow, National Museum of natural History Naturalis, The Netherlands  
Dr. Brian Fisher, California Academy of Sciences, USA  
Dr. Richard Gallon, Ilandudno, North Wales, LL30 1UP  
Dr. Hemant V. Ghate, Modern College, Pune, India  
Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh  
Mr. Jatishwar Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.

For Focus, Scope, Aims, and Policies, visit [https://threatenedtaxa.org/index.php/JoTT/aims\\_scope](https://threatenedtaxa.org/index.php/JoTT/aims_scope)For Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit [https://threatenedtaxa.org/index.php/JoTT/policies\\_various](https://threatenedtaxa.org/index.php/JoTT/policies_various)

continued on the back inside cover

Cover: Marine invertebrates - made with acrylic paint. © P. Kritika.



## Diversity and abundance of aquatic birds in Koothankulam village pond, Tamil Nadu, India

Selvam Muralikrishnan<sup>1</sup> , Esakkimuthu Shanmugam<sup>2</sup> , Natarajan Arun Nagendran<sup>3</sup>  & Duraisamy Pandiaraja<sup>4</sup> 

<sup>1</sup>National Centre of Excellence (MHRD), Thiagarajar College, Madurai Kamaraj University, Madurai, Tamil Nadu 625009, India.

<sup>2</sup>Basic Engineering, Tamilnadu Government Polytechnic College, Madurai, Tamil Nadu 625011, India.

<sup>3</sup>Department of Zoology, Thiagarajar College, Madurai Kamaraj University, Madurai, Tamil Nadu 625009, India.

<sup>4</sup>Department of Mathematics, Thiagarajar College, Madurai Kamaraj University, Madurai, Tamil Nadu 625009, India.

<sup>1</sup>[nilaasmurali@gmail.com](mailto:nilaasmurali@gmail.com) (corresponding author), <sup>2</sup>[shamphdm@gmail.com](mailto:shamphdm@gmail.com), <sup>3</sup>[narunngandran@gmail.com](mailto:narunngandran@gmail.com),

<sup>4</sup>[pandiaraja.d@gmail.com](mailto:pandiaraja.d@gmail.com)

**Abstract:** The diversity of birds in Koothankulam pond, located in Koothankulam village (8.495N, 77.755E), Tirunelveli district, southern Tamil Nadu, was studied. A total of 90 species belonging to 21 orders, 42 families, and 73 genera were recorded. The study recorded seasonal migrants such as Black Ibis, Oriental White Ibis, Bar-headed Goose & Spoonbill and indigenous species including the Pond Heron, Cattle Egret, White-breasted Kingfisher, Red-wattled Lapwing, Rose-ringed Parakeet, Purple-rumped Sunbird, Hoopoe, and Indian Robin. The primary data were analyzed by principal component analysis, cluster, and analysis of variance. Analysis of variance showed that the Menhinick index is statistically significant  $P < 0.05$ . A structural equation model was applied to analyze the physico-chemical parameters of water samples collected from the sampling site. Analysis of experimental data through the structural equation model indicates temperature and dissolved oxygen may indirectly affect bird diversity.

**Keywords:** Avian fauna, migrants, principal compound analysis, structural equation modeling.

**Abbreviations:** PCA—Principal compound analysis | ANOVA—Analysis of variance | SEM—Structural equation model | TDS—Total dissolved solids | DO—dissolved oxygen | CFI—Comparative Fit Index | TLI—Tucker-Lewis Index | RMSEA—Root Mean Square Error of Approximation | IUCN—International Union for Conservation of Nature | GFI—Goodness of Fit.

**Editor:** P.A. Azeez, Coimbatore, Tamil Nadu, India.

**Date of publication:** 26 June 2023 (online & print)

**Citation:** Muralikrishnan, S., E. Shanmugam, N.A. Nagendran & D. Pandiaraja (2023). Diversity and abundance of aquatic birds in Koothankulam village pond, Tamil Nadu, India. *Journal of Threatened Taxa* 15(6): 23297-23306. <https://doi.org/10.11609/jott.6612.15.6.23297-23306>

**Copyright:** © Muralikrishnan et al. 2023. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

**Funding:** This work was supported by the National Centre of Excellence (Ministry of Human Resource Development, New Delhi, India) [grant numbers F. No. 5-6/2013 -TS-VII dt. 28.09.2015].

**Competing interests:** The authors declare no competing interests.

**Author details:** S. MURALIKRISHNAN is a research scholar in the National Centre of Excellence (MHRD), Thiagarajar College, Madurai. His research field is ecology with special reference to birds. He documents wetland birds of Tirunelveli, Madurai, Virudhunagar, Sivagangai and Ramanathapuram. E. SHANMUGAM is currently working as lecturer in Mathematics in Tamilnadu Government Polytechnic College, Madurai. He is pursuing his Doctoral Programme in the National Centre of Excellence (MHRD), Thiagarajar College, Madurai as Part time research scholar. His field of research is graph theoretical modelling. N. ARUN NAGENDRAN is serving as associate professor of Zoology, and Joint Director of National Centre of Excellence, Thiagarajar College, Madurai funded by MHRD, Government of India. He is interested in ecology and conservation. D. PANDIARAJA is associate professor of Mathematics and serving as Principal, Thiagarajar College, Madurai. He is also the Director of National Centre of Excellence, Thiagarajar College, Madurai funded by MHRD, Government of India. He is specialized in Mathematical modelling and presently provides modelling for biological problems.

**Author contributions:** SM implemented the field surveys and collected the data; wrote the first draft. DP designed data analysis and done by ES. NAN supervised the research and provided multiple revisions in the early stages of writing. All authors read and approved the final manuscript.

**Acknowledgements:** This work was supported by the National Centre of Excellence (Ministry of Human Resource Development, New Delhi, India) [grant numbers F. No. 5-6/2013 -TS-VII dt. 28.09.2015].



## INTRODUCTION

The process of urbanization has fragmented and degraded different types of habitats. One such habitat is ponds of varied sizes, especially in urban and semi-urban areas. Under such conditions, the existing ponds provide little hope for life and support for the survival of organisms. Wetlands are among the most productive ecosystems in the world and play vital roles in flood control, aquifer recharge, nutrient absorption, and erosion control. In addition, wetlands provide home for a huge diversity of wildlife such as birds, mammals, fish, frogs, insects, and plants (Buckton 2007). Among several organisms surviving in and around water bodies, birds occupy a significant position, as they are one of the critical ecosystem functionaries.

Birds play prominent roles in ecosystems, serving as pollinators (Stiles 1978), predators (Rudebeck 1950), scavengers (Roen 2005), prey (Rudebeck 1950), and regulators of pest populations (Peterson 1980). Their interactions are wide and varied with abiotic and biotic components of different ecosystems, i.e., they are not restricted to one particular system but also to adjacent systems as they enjoy the power of flight. India hosts around 1,353 species of birds (Praveen & Jaypal 2023). Analysis of avian diversity portrays the status of their aquatic habitats and neighboring ecosystems. As there is no detailed report on the diversity of Koonthankulam village pond, the present study was carried out to analyze seasonal variation in bird diversity and their relationship with water quality parameters.

## MATERIALS AND METHODS

The study was carried out in Koonthankulam village pond (8.495N, 77.755E), Tirunelveli, southern Tamil Nadu, from January 2017 to November 2018. This pond is surrounded by agricultural fields, where different crops are grown throughout the year. Macro-invertebrates of the agricultural fields and grains scattered around after harvesting along with the pond allure avifauna to this region. Bird watching and recording have been carried out for six seasons (namely, spring, summer, early monsoon, late monsoon, early winter, and late winter) by point count protocol as per Newson et al. (2009). Observations were made using a binocular (Nikon 16x50 AculonA211), and photography was done with Canon 6D Mark II with zoom lenses. The birds recorded were identified by referring to Ali & Ripley (1981).

Physical and chemical parameters such as

temperature, pH, total dissolved solids (TDS), conductivity, salinity, and dissolved oxygen (DO), were measured on the spot using a water analyzer (Systronic make 371). Other parameters (Hardness, magnesium, calcium, chloride, alkalinity, and acidity) were determined following the standard procedure from American Public Health Association (APHA) and Trivedy & Goel (1984). The map has been generated using the software QGIS 3.6.

Structural equation modeling (SEM) is a multivariate statistical tool that can be used to describe linear relationships among variables (McCune & Grace 2002; Grace 2006). SEM provides explicit regression estimations for all parameters (Byrne 2001). Structural equation modeling of groundwater physicochemical parameters data was used to characterize the groundwater quality and to identify the controlling factors on bird diversity. IBM SPSS AMOS 22.0 was used to analyze the structured model's fit and estimate the parameters of both observed and latent variables. Chi-square test, the root mean square error of approximation (RMSEA), and the goodness fit index are used as measures of model fit. A measure of minimum sample discrepancy is indicated by the value chi-square divided by the degrees of freedom (CMIN/df) (Belkhiri & Narany 2015). This measure was used to analyze the fit of the model. A value of less than 5 indicates the model's fit is adequate (Arbuckle 2012), less than 3 reflects that the model is acceptable (Kline 1998), whereas a value of 2 or less represents the model was fit as a good model. Goodness-of-Fit statistics (GFI) was calculated as the variance proportion accounted for by the estimated covariance (Tabachnick & Fidell 2007). The RMSEA provides a way to understand optimally chosen parameter estimates that would fit the covariance matrix (Byrne 1998). When the proposed structural model has a (comparative fit index)  $CFI > 0.95$  and an  $RMSEA < 0.05$ , then the structural model is to be considered a good model (Byrne 2010). The diversity indices were calculated using PAST 3.14 software.

## RESULT AND DISCUSSION

A total of 90 species of birds belonging to 21 orders and 42 families were recorded. Of this, 87 species of birds are of 'Least Concern', and three species are 'Near Threatened' (Table 1). Of these, 41 were waterbirds, and 49 were terrestrial birds (Table 1). Waterbirds constitute 12 species of waterfowl (swimmers), 25 species of waders, and three species were divers. Out of 49 terrestrial birds, 35 species were passerine birds, five were birds of prey,

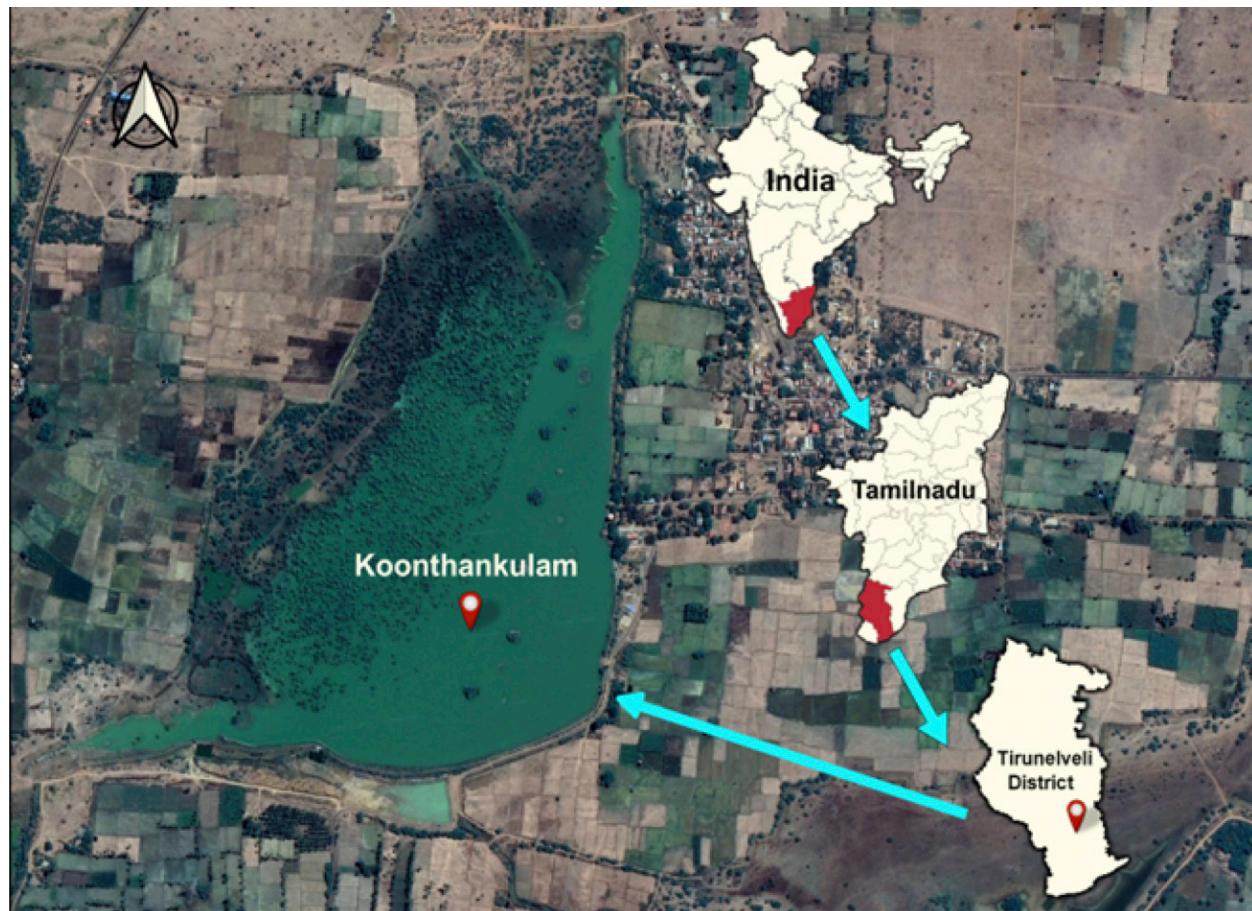



Image 1. Map of the study area.

six were upland ground birds, two were night birds, and two were tree-clinging birds. It is evident from the data that the order Passeriformes is represented by the most families (Sturnidae, Motacillidae, Corvidae, Dicruridae, Estrildidae, Muscicapidae, Alaudidae, Motacillidae, Nectariniidae, Passeridae, Pycnonotidae, Muscicapidae, Monarchidae, and Leiothrichidae). In contrast, the highest numbers of species recorded were from Ardeidae, Anatidae, Cuculidae, Columbidae, Rallidae, and Threskiornithidae. The highest abundance index (9.2) was seen for *Anastomus oscitans*. *Bubo bubo* and *Pandion haliaetus* had a low abundance index (0.02). Of the 90 species, 26 species have more than 1 abundance index.

The distribution of various species was analyzed using the principal component analysis (PCA) method (Dauda et al. 2017). The distribution of the occurrence of various species and their variance-covariance matrices were analyzed through scatter diagrams generated from PCA, and the results were further evaluated by 95% ellipses (Figure 1). The results revealed that the species clustering differs with seasons. In spring, *Threskiornis*

*melanocephalus* (THME), *Psittacula krameri* (PSKR), *Passer domesticus* (PADO), and *Corvus splendens* (COSP) were found, while *Ardeola grayii* (ARGR), *Turdoides striata* (TUST), *Acridotheres tristis* (ACTR), *E. garzetta* (EGGA) and *T. melanocephalus* (THME) were recorded during summer. Similarly, *A. tristis* (ACTR), *E. garzetta* (EGGA), *C. splendens* (COSP), *Bubulcus ibis* (BUIB), and *Pseudibis papillosa* (PSPA) were recorded in early monsoon, while *A. oscitans* (ANOS), *P. papillosa* (PSPA), *Himantopus himantopus* (HIHI), *A. tristis* (ACTR), and *C. splendens* (COSP) were found during late monsoon. In early winter, *A. oscitans* (ANOS), *Anser indicus* (ANIN), *Mycteria leucocephala* (MYLE), and *C. splendens* (COSP) were recorded, which distinguish themselves from other species in abundance. More species were abundant in late winter than in other seasons. From the results, it could be seen that the pond has been dominated by *C. splendens* (COSP), *E. garzetta* (EGGA), *A. tristis* (ACTR), etc.

The similarity in the species composition and abundance among the six seasons analyzed by Bray-Curtis coefficient (Cluster analysis) clustered the

**Table 1. Occurrence, IUCN Red List, and abundance index of avian communities in the Koonthankulam village pond, Tirunelveli, Tamil Nadu, India.**

|    | Scientific Name                  | Family       | Order           | IUCN Red List status | Abundance index | Behavior category  |
|----|----------------------------------|--------------|-----------------|----------------------|-----------------|--------------------|
| 1  | <i>Accipiter badius</i>          | Accipitridae | Accipitriformes | LC                   | 0.15            | Bird of prey       |
| 2  | <i>Acridotheres tristis</i>      | Sturnidae    | Passeriformes   | LC                   | 5.33            | Percher            |
| 3  | <i>Alcedo atthis</i>             | Alcedinidae  | Coraciiformes   | LC                   | 0.24            | Percher            |
| 4  | <i>Amaurornis phoenicurus</i>    | Rallidae     | Gruiformes      | LC                   | 0.41            | Swimmer            |
| 5  | <i>Anas acuta</i>                | Anatidae     | Anseriformes    | LC                   | 0.31            | Swimmer            |
| 6  | <i>Anas arcuata</i>              | Anatidae     | Anseriformes    | LC                   | 0.51            | Swimmer            |
| 7  | <i>Anas crecca</i>               | Anatidae     | Anseriformes    | LC                   | 0.44            | Swimmer            |
| 8  | <i>Anas poecilorhyncha</i>       | Anatidae     | Anseriformes    | LC                   | 0.79            | Swimmer            |
| 9  | <i>Anas querquedula</i>          | Anatidae     | Anseriformes    | LC                   | 0.22            | Swimmer            |
| 10 | <i>Anastomus oscitans</i>        | Ciconiidae   | Ciconiiformes   | LC                   | 9.2             | Wader              |
| 11 | <i>Anhinga melanogaster</i>      | Anhingidae   | Suliformes      | NT                   | 0.46            | Diver              |
| 12 | <i>Anser indicus</i>             | Anatidae     | Anseriformes    | LC                   | 2.7             | Swimmer            |
| 13 | <i>Anthus rufulus</i>            | Motacillidae | Passeriformes   | LC                   | 0.26            | Percher            |
| 14 | <i>Ardea cinerea</i>             | Ardeidae     | Pelecaniformes  | LC                   | 0.52            | Wader              |
| 15 | <i>Ardea purpurea</i>            | Ardeidae     | Pelecaniformes  | LC                   | 0.15            | Wader              |
| 16 | <i>Ardeola grayii</i>            | Ardeidae     | Pelecaniformes  | LC                   | 1.32            | Wader              |
| 17 | <i>Artamus fuscus</i>            | Artamidae    | Passeriformes   | LC                   | 2.7             | Percher            |
| 18 | <i>Athene brama</i>              | Strigidae    | Strigiformes    | LC                   | 0.25            | Night bird         |
| 19 | <i>Bubo bubo</i>                 | Strigidae    | Strigiformes    | LC                   | 0.02            | Night bird         |
| 20 | <i>Bubulcus ibis</i>             | Ardeidae     | Pelecaniformes  | LC                   | 3.61            | Wader              |
| 21 | <i>Butorides striatus</i>        | Ardeidae     | Pelecaniformes  | LC                   | 0.53            | Wader              |
| 22 | <i>Calidris alpina</i>           | Scopocidae   | Charadriiformes | LC                   | 0.15            | Wader              |
| 23 | <i>Casmerodius albus</i>         | Ardeidae     | Pelecaniformes  | LC                   | 0.45            | Wader              |
| 24 | <i>Centropes sinensis</i>        | Cuculidae    | Cuculiformes    | LC                   | 0.29            | Percher            |
| 25 | <i>Charadrius dubius</i>         | Charadriidae | Charadriiformes | LC                   | 0.32            | Wader              |
| 26 | <i>Clamator jacobinus</i>        | Cuculidae    | Cuculiformes    | LC                   | 0.29            | Percher            |
| 27 | <i>Columba livia</i>             | Columbidae   | Columbiformes   | LC                   | 2.47            | Upland ground      |
| 28 | <i>Coracias benghalensis</i>     | Coraciidae   | Coraciiformes   | LC                   | 0.75            | Percher            |
| 29 | <i>Corvus macrorhynchos</i>      | Corvidae     | Passeriformes   | LC                   | 1.28            | Percher            |
| 30 | <i>Corvus splendens</i>          | Corvidae     | Passeriformes   | LC                   | 8.11            | Percher            |
| 31 | <i>Cuculus poliocephalus</i>     | Cuculidae    | Cuculiformes    | LC                   | 0.16            | Percher            |
| 32 | <i>Dendrocitta vagabunda</i>     | Corvidae     | Passeriformes   | LC                   | 0.39            | Percher            |
| 33 | <i>Dicrurus leucophaeus</i>      | Dicruridae   | Passeriformes   | LC                   | 0.44            | Percher            |
| 34 | <i>Dicrurus macrocercus</i>      | Dicruridae   | Passeriformes   | LC                   | 1.45            | Percher            |
| 35 | <i>Dinopium benghalense</i>      | Picidae      | Piciformes      | LC                   | 0.15            | Tree clinging bird |
| 36 | <i>Dupetor flavicollis</i>       | Ardeidae     | Pelecaniformes  | LC                   | 0.06            | Wader              |
| 37 | <i>Egretta garzetta</i>          | Ardeidae     | Pelecaniformes  | LC                   | 4.22            | Wader              |
| 38 | <i>Egretta intermedia</i>        | Ardeidae     | Pelecaniformes  | LC                   | 1.59            | Wader              |
| 39 | <i>Eudynamys scolopacea</i>      | Cuculidae    | Cuculiformes    | LC                   | 0.34            | Percher            |
| 40 | <i>Euodice malabarica</i>        | Estrildidae  | Passeriformes   | LC                   | 1.85            | Percher            |
| 41 | <i>Falco peregrinus</i>          | Falconidae   | Falconiformes   | LC                   | 0.09            | Bird of prey       |
| 42 | <i>Francolinus pondicerianus</i> | Phasianidae  | Galliformes     | LC                   | 0.57            | Upland ground      |
| 43 | <i>Fulica atra</i>               | Rallidae     | Gruiformes      | LC                   | 1.27            | Swimmer            |
| 44 | <i>Gallinula chloropus</i>       | Rallidae     | Gruiformes      | LC                   | 0.61            | Swimmer            |
| 45 | <i>Halcyon smyrnensis</i>        | Alcedinidae  | Coraciiformes   | LC                   | 0.57            | Percher            |

|    | Scientific Name                     | Family            | Order             | IUCN Red List status | Abundance index | Behavior category  |
|----|-------------------------------------|-------------------|-------------------|----------------------|-----------------|--------------------|
| 46 | <i>Haliastur indus</i>              | Accipitridae      | Accipitriformes   | LC                   | 0.4             | Bird of prey       |
| 47 | <i>Himantopus himantopus</i>        | Recurvirostridae  | Charadriiformes   | LC                   | 1.85            | Wader              |
| 48 | <i>Hydrophasianus chirurgus</i>     | Jacanidae         | Charadriiformes   | LC                   | 0.78            | Wader              |
| 49 | <i>Lonchura punctulata</i>          | Estrildidae       | Passeriformes     | LC                   | 0.16            | Percher            |
| 50 | <i>Luscinia brunnea</i>             | Muscicapidae      | Passeriformes     | LC                   | 0.15            | Percher            |
| 51 | <i>Merops orientalis</i>            | Meropidae         | Coraciiformes     | LC                   | 0.53            | Percher            |
| 52 | <i>Merops philippinus</i>           | Meropidae         | Coraciiformes     | LC                   | 0.74            | Percher            |
| 53 | <i>Milvus migrans</i>               | Accipitridae      | Accipitriformes   | LC                   | 0.13            | Bird of prey       |
| 54 | <i>Mirafra cantillans</i>           | Alaudidae         | Passeriformes     | LC                   | 0.55            | Percher            |
| 55 | <i>Motacilla maderaspatensis</i>    | Motacillidae      | Passeriformes     | LC                   | 1.07            | Percher            |
| 56 | <i>Mycteria leucocephala</i>        | Ciconiidae        | Ciconiiformes     | NT                   | 3.18            | Wader              |
| 57 | <i>Nectarinia asiatica</i>          | Nectariniidae     | Passeriformes     | LC                   | 0.74            | Percher            |
| 58 | <i>Nectarinia zeylonica</i>         | Nectariniidae     | Passeriformes     | LC                   | 0.44            | Percher            |
| 59 | <i>Nycticorax nycticorax</i>        | Ardeidae          | Pelecaniformes    | LC                   | 0.88            | Wader              |
| 60 | <i>Oriolus oriolus</i>              | Oriolidae         | Passeriformes     | LC                   | 0.27            | Percher            |
| 61 | <i>Pandion haliaetus</i>            | Pandionidae       | Accipitriformes   | LC                   | 0.02            | Bird of prey       |
| 62 | <i>Passer domesticus</i>            | Passeridae        | Passeriformes     | LC                   | 2.15            | Percher            |
| 63 | <i>Pavo cristatus</i>               | Phasianidae       | Galliformes       | LC                   | 1.45            | Upland ground      |
| 64 | <i>Pelecanus onocrotalus</i>        | Pelecanidae       | Pelecaniformes    | LC                   | 0.4             | Swimmer            |
| 65 | <i>Pelecanus philippensis</i>       | Pelecanidae       | Pelecaniformes    | LC                   | 1.28            | Swimmer            |
| 66 | <i>Phaenicophaeus viridirostris</i> | Cuculidae         | Cuculiformes      | LC                   | 0.28            | Percher            |
| 67 | <i>Phalacrocorax carbo</i>          | Phalacrocoracidae | Phalacrocoracidae | LC                   | 0.13            | Diver              |
| 68 | <i>Phalacrocorax niger</i>          | Phalacrocoracidae | Phalacrocoracidae | LC                   | 1.87            | Diver              |
| 69 | <i>Platalea leucorodia</i>          | Threskiornithidae | Pelecaniformes    | LC                   | 0.75            | Wader              |
| 70 | <i>Plegadis falcinellus</i>         | Threskiornithidae | Pelecaniformes    | LC                   | 0.81            | Wader              |
| 71 | <i>Porphyrio porphyrio</i>          | Rallidae          | Gruiformes        | LC                   | 0.52            | Swimmer            |
| 72 | <i>Pseudibis papillosa</i>          | Threskiornithidae | Pelecaniformes    | LC                   | 1.88            | Wader              |
| 73 | <i>Psittacula krameri</i>           | Psittacidae       | Psittaciformes    | LC                   | 3.32            | Percher            |
| 74 | <i>Pterocles namaqua</i>            | Pteroclidea       | Pterocliformes    | LC                   | 0.09            | Percher            |
| 75 | <i>Pycnonotus cafer</i>             | Pycnonotidae      | Passeriformes     | LC                   | 0.16            | Percher            |
| 76 | <i>Sarkidiornis sylvicola</i>       | Anatidae          | Anseriformes      | LC                   | 0.87            | Swimmer            |
| 77 | <i>Saxicoloides fulicata</i>        | Muscicapidae      | Passeriformes     | LC                   | 0.34            | Percher            |
| 78 | <i>Stactolaema olivacea</i>         | Lybiidae          | Piciformes        | LC                   | 0.42            | Tree clinging bird |
| 79 | <i>Streptopelia chinensis</i>       | Columbidae        | Columbiformes     | LC                   | 0.18            | Upland ground      |
| 80 | <i>Streptopelia decaocto</i>        | Columbidae        | Columbiformes     | LC                   | 0.3             | Upland ground      |
| 81 | <i>Streptopelia senegalensis</i>    | Columbidae        | Columbiformes     | LC                   | 0.19            | Upland ground      |
| 82 | <i>Tachybaptus ruficollis</i>       | Podicipedidae     | Podicipediformes  | LC                   | 0.72            | Swimmer            |
| 83 | <i>Tachymarptis melba</i>           | Apodidae          | Apodiformes       | LC                   | 2.5             | Percher            |
| 84 | <i>Terpsiphone paradise</i>         | Monarchidae       | Passeriformes     | LC                   | 0.19            | Percher            |
| 85 | <i>Threskiornis melanocephalus</i>  | Threskiornithidae | Pelecaniformes    | NT                   | 6.21            | Wader              |
| 86 | <i>Tringa nebularia</i>             | Scopacidae        | Charadriiformes   | LC                   | 0.36            | Wader              |
| 87 | <i>Turdoides striata</i>            | Leiothrichidae    | Passeriformes     | LC                   | 1.33            | Percher            |
| 88 | <i>Upupa epops</i>                  | Upupidae          | Bucerotiformes    | LC                   | 0.32            | Percher            |
| 89 | <i>Vanellus indicus</i>             | Charadriidae      | Charadriiformes   | LC                   | 0.57            | Wader              |
| 90 | <i>Vanellus malabaricus</i>         | Charadriidae      | Charadriiformes   | LC                   | 0.48            | Wader              |

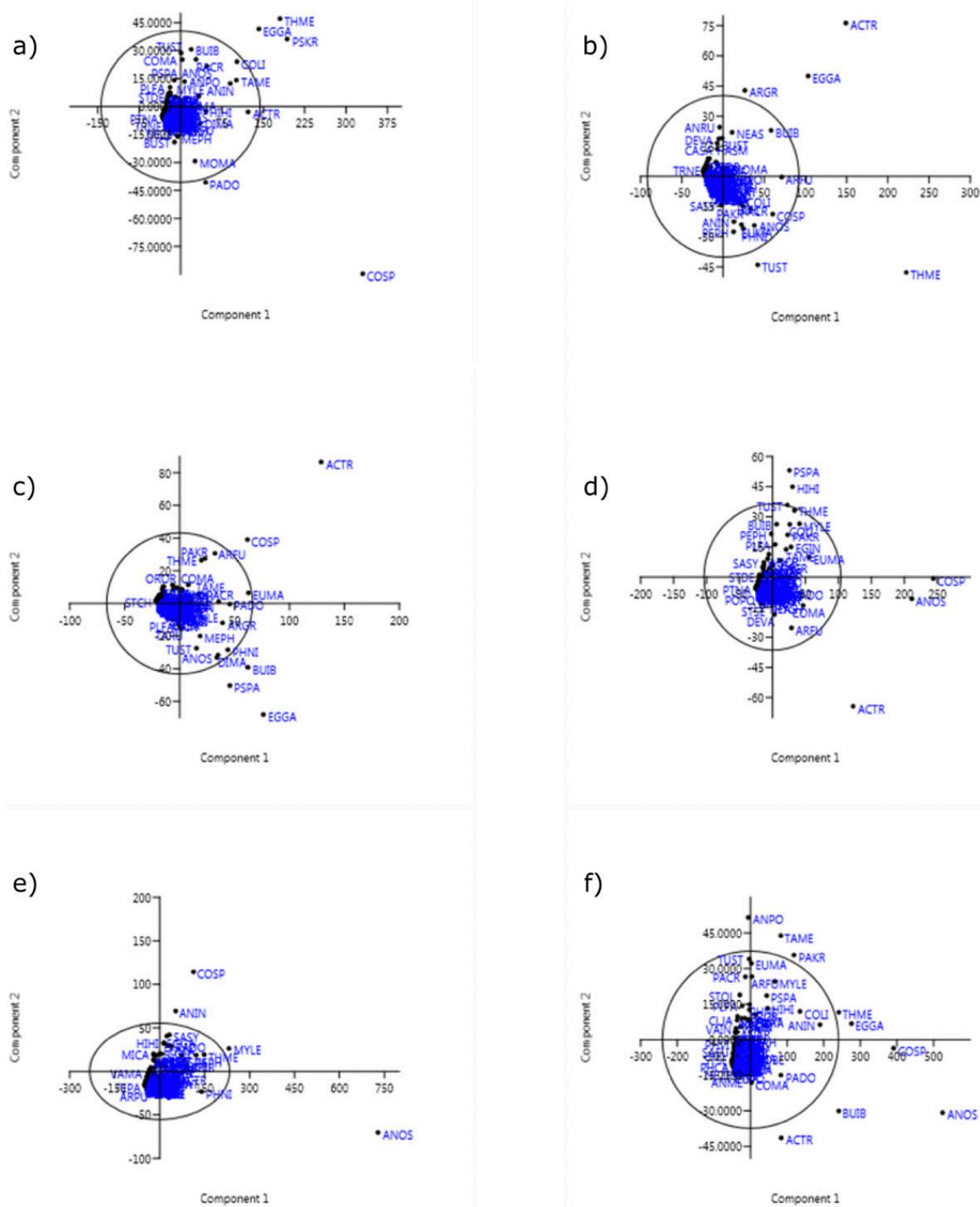



Figure 1. Scatter diagrams of bird species using PCA for a— spring | b— summer | c— early monsoon | d— late monsoon | e— early winter | f— late winter.

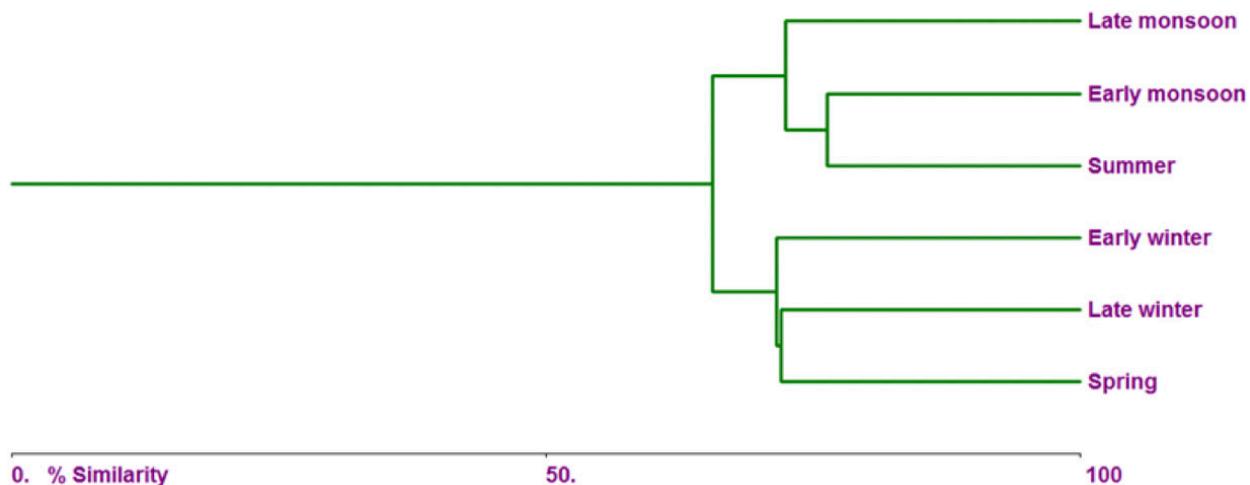



Figure 2. Single linkage cluster analysis of the population of birds among seasons using Bray-Curtis cluster analysis of similarity.

Table 2 Avifaunal diversity in different seasons of the Koonthankulam. \*significant ( $P < 0.05$ ).

| Biodiversity indices | Spring           | Summer           | Early monsoon    | Late Monsoon     | Early winter     | Late winter      | Sum of squares | F value |
|----------------------|------------------|------------------|------------------|------------------|------------------|------------------|----------------|---------|
|                      | Feb–Mar          | Apr–May          | Jun–Jul          | Aug–Sep          | Oct–Nov          | Dec–Jan          |                |         |
| Taxa_S               | 84.33 ± 3.18     | 82.00 ± 1.53     | 83.33 ± 2.40     | 80.66 ± 0.33     | 84.00 ± 2.08     | 85.00 ± 1.73     | 39.111         | 0.61    |
| Individuals          | 2980.33 ± 316.26 | 1902.66 ± 266.89 | 1408.33 ± 215.13 | 1315.00 ± 158.24 | 1741.66 ± 168.94 | 3027.33 ± 498.27 | 8665477.111    | 6.673*  |
| Shannon_H            | 3.36 ± 0.19      | 3.53 ± 0.09      | 3.64 ± 0.09      | 3.70 ± 0.06      | 3.61 ± 0.11      | 3.55 ± 0.17      | 0.214          | 0.898   |
| Buzas & Gibson's     | 0.35 ± 0.06      | 0.42 ± 0.03      | 0.46 ± 0.03      | 0.50 ± 0.03      | 0.45 ± 0.04      | 0.42 ± 0.06      | 0.038          | 1.24    |
| Mehinick             | 1.56 ± 0.12      | 1.91 ± 0.11      | 2.25 ± 0.12      | 2.25 ± 0.13      | 2.03 ± 0.08      | 1.57 ± 0.09      | 1.435          | 7.811*  |
| Chao-1               | 94.77 ± 3.09     | 101.27 ± 9.26    | 94.48 ± 5.46     | 90.89 ± 0.37     | 93.73 ± 1.51     | 93.57 ± 3.34     | 179.678        | 0.518   |

seasons into five, in the range of 55.25–100.00 (Figure 3). The five clusters show that each season has a different composition of the bird populations. The dendrogram showed that summer and early monsoon have a maximum similarity of 76.30. Two groups were identified among the six seasons. Early winter, late winter, and spring formed a group and early monsoon, late monsoon, and summer formed another group.

The number of individuals across seasons differed significantly (ANOVA,  $F_{5,12} = 6.673$ ,  $P < 0.05$ ; Table 2). A higher number of individuals was present in late winter ( $3027.33 \pm 498.27$ ), whereas the lowest number was recorded in late monsoon ( $1315.00 \pm 158.24$ ). The second-highest population of birds appeared in spring ( $2980.33 \pm 316.26$ ). This implies that the number of birds from December–March was high. The maximum Taxa\_S was found in late winter ( $85.00 \pm 1.73$ ), whereas the minimum was in late monsoon ( $80.66 \pm 0.33$ ), with the range of Taxa\_S over all the seasons being 5. The results reveal minimum deviation in species composition with high variation in population. However, the highest

Shannon\_H diversity ( $3.70 \pm 0.06$ ) was in late monsoon and the lowest ( $3.36 \pm 0.19$ ) in spring, indicating a more diverse and even species distribution in late monsoon. The Shannon\_H diversity of birds among various seasons was not significantly different (ANOVA,  $F_{5,12} = 0.898$ ,  $P > 0.05$ ).

The species evenness among the various seasons was measured by Buzas and Gibson's index. Evenness was maximum in late monsoon ( $0.50 \pm 0.03$ ) and minimum in spring ( $0.35 \pm 0.06$ ). However, the Buzas and Gibson's evenness indices across various seasons were not significantly different (ANOVA,  $F_{5,12} = 1.24$ ,  $P > 0.05$ ). The richness was measured by the Menhinick species richness index. The Menhinick richness index differed significantly among the seasons (ANOVA,  $F_{5,12} = 7.811$ ,  $P < 0.05$ ). Early ( $2.25 \pm 0.12$ ) and late monsoon ( $2.25 \pm 0.13$ ) have a high value of Menhinick richness index, and spring ( $1.56 \pm 0.12$ ) and late winter ( $1.57 \pm 0.09$ ) have a low value. The Chao-1 estimator was used to analyze singleton and doubleton species in the bird community. The maximum singleton and doubleton species occurred

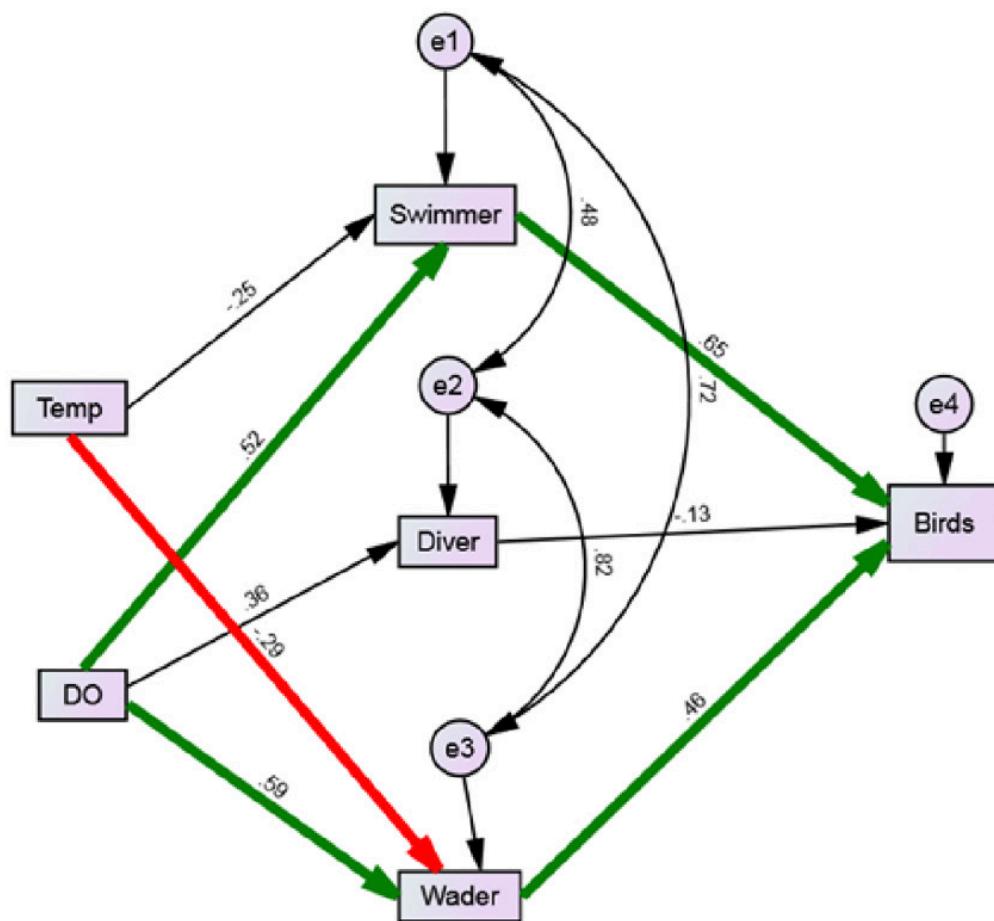



Figure 3. SEM of regression model.

in summer ( $101.27 \pm 9.26$ ) and the minimum in late monsoon ( $90.89 \pm 0.37$ ). Among all the seasons, the Chao-1 estimator was not significantly different (ANOVA,  $F_{5,12} = 0.518$ ,  $P > 0.05$ ).

A correlation analysis has been carried out for all physico-chemical parameters with swimmer, diver and wader species to understand the influence of the water-quality parameters on the bird population (Table 3). The following results were noticed in that analysis. The temperature was negatively correlated with swimmer and wader populations at  $p = 0.01$ , and DO was positively correlated with all the three water bird communities encountered in this study at  $p = 0.05$ . In addition to this, a SEM model was designed and analyzed to confirm that temperature and DO were the most important parameters that affect bird counts. Thus, a structural equation model has been framed with the following six parameters, temperature, DO, swimmer, diver, and wader abundances. Bird's abundance has been studied with reference to the effect of temperature using structural equation modeling, as in Duclos et al. (2017).

Patra et al. (2010) used stepwise multiple regression analysis to study the physico-chemical parameters affecting the avifaunal abundance; e1, e2, and e3 are added to the SEM to reduce the error value between the variables. Temperature, DO, and errors are exogenous variables, and swimmer, diver, and wader birds are endogenous variables.

Figure 3 expresses the conceptual framework for the model. The fitness of a SEM is important to understand the reliability of the results. The measure CMIN/df (0.518)  $< 2$ , GFI (0.95)  $> 0.90$ , and RMSEA (0.00)  $< 0.05$  revealed that the model represented a realistic fit of the data. The regression equations for the four endogenous variables with standardized coefficients are

$$\text{Birds} = (-.13) \text{ Diver} + (.65) \text{ Swimmer} + (.46) \text{ Wader} + (1) e4$$

$$\text{Diver} = (.36) \text{ DO} + (1) e2$$

$$\text{Swimmer} = (.52) \text{ DO} + (-.25) \text{ Temp} + (1) e1$$

$$\text{Wader} = (.59) \text{ DO} + (1) e3 + (-.29) \text{ Temp}$$

Five path coefficients were significant at 0.05 (Table 4). From the significance of these path coefficients,

**Table 3. Correlation of physico-chemical parameters, swimmer, diver, and wader.** \*Significant at the level of 0.05 | \*\*Significant at the level of 0.01

|                      | Swimmer  | Diver   | Wader   | Temperature (°C) | pH     | DO (ppm) | TDS (ppm) | Salinity (ppt) | Conductivity (µS) | Acidity (mg/l) | Alkalinity (mg/l) | Free Co2 (mg/l) | Chloride (mg/l) | Calcium (mg/l) | Total hardness (mg/l) | Magnesium (mg/l) | Nitrogen (mg/l) |
|----------------------|----------|---------|---------|------------------|--------|----------|-----------|----------------|-------------------|----------------|-------------------|-----------------|-----------------|----------------|-----------------------|------------------|-----------------|
| Swimmer              | 1.000    |         |         |                  |        |          |           |                |                   |                |                   |                 |                 |                |                       |                  |                 |
| Diver                | 0.553*   | 1.000   |         |                  |        |          |           |                |                   |                |                   |                 |                 |                |                       |                  |                 |
| Wader                | 0.874**  | 0.721** | 1.000   |                  |        |          |           |                |                   |                |                   |                 |                 |                |                       |                  |                 |
| Temperature (°C)     | -0.659** | -0.454  | -0.692* | 1.000            |        |          |           |                |                   |                |                   |                 |                 |                |                       |                  |                 |
| pH                   | -0.168   | -0.081  | -0.014  | 0.463            | 1.000  |          |           |                |                   |                |                   |                 |                 |                |                       |                  |                 |
| DO (ppm)             | 0.583*   | 0.585*  | 0.682*  | -0.352           | 0.226  | 1.000    |           |                |                   |                |                   |                 |                 |                |                       |                  |                 |
| TDS (ppm)            | 0.160    | -0.127  | 0.088   | -0.398           | 0.066  | 0.227    | 1.000     |                |                   |                |                   |                 |                 |                |                       |                  |                 |
| Salinity (ppt)       | -0.083   | -0.225  | -0.197  | -0.028           | 0.313  | -0.044   | 0.730**   | 1.000          |                   |                |                   |                 |                 |                |                       |                  |                 |
| Conductivity(µS)     | 0.050    | -0.012  | 0.008   | -0.281           | 0.178  | 0.210    | 0.934**   | 0.861**        | 1.000             |                |                   |                 |                 |                |                       |                  |                 |
| Acidity(mg/l)        | -0.259   | -0.241  | -0.341  | 0.248            | 0.670* | 0.052    | -0.349    | 0.067          | -0.223            | 1.000          |                   |                 |                 |                |                       |                  |                 |
| Alkalinity (mg/l)    | -0.110   | -0.263  | -0.165  | 0.344            | 0.662* | -0.019   | 0.055     | 0.344          | 0.105             | 0.647*         | 1.000             |                 |                 |                |                       |                  |                 |
| Free Co2 (mg/l)      | -0.361   | -0.098  | -0.460  | 0.347            | 0.508  | -0.177   | -0.471    | 0.068          | -0.246            | 0.819**        | 0.461             | 1.000           |                 |                |                       |                  |                 |
| Chloride (mg/l)      | 0.212    | -0.360  | -0.025  | 0.298            | 0.329  | -0.124   | -0.147    | 0.089          | -0.238            | 0.488          | 0.593*            | 0.410           | 1.000           |                |                       |                  |                 |
| Calcium (mg/l)       | -0.110   | -0.417  | -0.319  | -0.402           | -0.535 | -0.405   | 0.376     | 0.316          | 0.320             | -0.405         | -0.537            | -0.309          | -0.160          | 1.000          |                       |                  |                 |
| Total hardness(mg/l) | 0.038    | -0.432  | -0.297  | 0.033            | -0.085 | -0.283   | 0.541     | 0.726*         | 0.529             | -0.030         | 0.327             | 0.041           | 0.457           | 0.421          | 1.000                 |                  |                 |
| Magnesium (mg/l)     | 0.033    | -0.369  | -0.209  | 0.016            | -0.069 | -0.201   | 0.519     | 0.679*         | 0.512             | -0.151         | 0.316             | -0.022          | 0.405           | 0.300          | 0.934**               | 1.000            |                 |
| Nitrogen (mg/l)      | -0.204   | -0.067  | -0.061  | 0.501            | 0.505  | 0.135    | -0.337    | -0.172         | -0.337            | 0.620*         | 0.647*            | 0.386           | 0.414           | -0.603*        | -0.239                | -0.228           | 1.000           |

it is revealed that DO positively influences swimmer and wader counts, while temperature negatively influences wader counts. Duclos et al. (2017) reveal that temperature directly affects the abundance of birds. Waders have a negative direct effect from temperature. Dissolved oxygen positively influenced total avifaunal abundance (Patra et al. 2010). Both correlation analyses and SEM model confirmed that temperature and DO are the main parameters that affect bird count in this study area.

## REFERENCES

Ali, S. & S.D. Ripley (1981). *Handbook of the Birds of India and Pakistan: Together with Those of Bangladesh, Nepal, Bhutan and Sri Lanka Vol. 2: Megapodes to Crab Plover*. Oxford University Press, USA, 347 pp.

APHA (2005). Standard methods for the examination of water and wastewater. 21<sup>st</sup> Edition. American Public Health Association, American water works Association Water Environment Federation, 541 pp.

Arbuckle J.L. (2012). IBM SPSS Amos 21 user's guide. IBM Corporation, Armonk.

Belkhir, L. & T.S. Narany (2015). Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. *Water Resources Management* 29(6): 2073–2089. <https://doi.org/10.1007/s11269-015-0929-7>

Buckton, S. (2007). Managing wetlands for sustainable livelihoods at KoshiTappu. *Danphe* 16(1): 12–13

Byrne, B.M. (1998). *Structural Equation Modeling with LISREL, PRELIS and SIMPLIS: Basic Concepts, Applications and Programming*. Psychology Press, New York, 432 pp. <https://doi.org/10.4324/9780203774762>

Byrne, B.M. (2001). Structural equation modeling with AMOS, EQS, and LISREL: Comparative approaches to testing for the factorial validity of a measuring instrument. *International Journal of Testing* 1(1): 55–86. [https://doi.org/10.1207/S15327574IJT0101\\_04](https://doi.org/10.1207/S15327574IJT0101_04)

Byrne, B.M. (2010). *Structural equation modeling with AMOS: Basic concepts, Applications, and programming*. Routledge, New York, 416 pp. <https://doi.org/10.4324/9780203805534>

Dauda, T.O., M.H. Baksh, & A.M.S. Shahrul (2017). Birds' species diversity measurement of Uchali Wetland (Ramsar site) Pakistan. *Journal of Asia-Pacific Biodiversity* 10(2): 167–174. <https://doi.org/10.1016/j.japb.2016.06.011>

Duclos, T.R., W.V. DeLuca & D.I. King (2017). Direct and indirect effects of climate on bird abundance along elevation gradients in the Northern Appalachian mountains. *Diversity & Distribution* 2019(25): 1670–1683. <https://doi.org/10.1111/ddi.12968>

Grace, J.B. (2006). *Structural equation modeling and natural systems*. Cambridge University Press, New York, 361 pp

Kline, R.B. (2005). *Principles and Practice of Structural Equation Modelling*. Guilford Press, New York, 366 pp.

McCune, B., J.B. Grace & D.L. Urban (2002). *Analysis of Ecological Communities*. MjM Software Design, Gleneden Beach, Oregon, USA, 300 pp.

Newson, S.E., N. Ockendon, A. Joys, D.G. Noble & S.R. Baillie (2009). Comparison of habitat-specific trends in the abundance of breeding birds in the UK. *Bird Study* 56(2): 233–243. <https://doi.org/10.1080/00063650902792098>

Patra, A., K.B. Santra & C.K. Manna (2010). Relationship among the abundance of waterbird species diversity, macrophytes, macroinvertebrates and physicochemical characteristics

Table 4. Regression weights between parameters of the SEM.

|         |      |         | Unstandardized Estimate | Standardized Estimate | S.E.   | C.R.   | P     |
|---------|------|---------|-------------------------|-----------------------|--------|--------|-------|
| Swimmer | <--- | Temp    | -12.284                 | -0.253                | 10.072 | -1.220 | 0.223 |
| Swimmer | <--- | DO      | 61.548                  | 0.516                 | 28.169 | 2.185  | 0.029 |
| Diver   | <--- | DO      | 17.555                  | 0.363                 | 13.003 | 1.350  | 0.177 |
| Wader   | <--- | DO      | 243.994                 | 0.586                 | 90.907 | 2.684  | 0.007 |
| Wader   | <--- | Temp    | -49.556                 | -0.292                | 21.093 | -2.349 | 0.019 |
| Birds   | <--- | Swimmer | 3.645                   | 0.650                 | 0.625  | 5.828  | 0.000 |
| Birds   | <--- | Wader   | 0.739                   | 0.460                 | 0.244  | 3.024  | 0.002 |
| Birds   | <--- | Diver   | -1.779                  | -0.129                | 1.436  | -1.239 | 0.215 |

in Santragachi Jheel, Howrah, WB, India. *Acta Zoologica Bulgarica* 62(3): 277–300.

**Peterson, S.R. (1980).** The role of birds in western communities, pp. 11–14. In: DeGraff, R.M. & N.G. Tilghman (eds.). *Management of western forests and grasslands for nongame birds: Proceedings of the workshop*, USDA Forest Service General Technical Report.

**Praveen, J. & R. Jayapal (2023).** Taxonomic updates to the checklists of birds of India and the South Asian region. *Indian Birds* 18(5): 131–134.

**Roen, K.T. & R.H. Yahner (2005).** Behavioral responses of avian

scavengers in different habitats. *Northeastern Naturalist* 12(1): 103–113.

**Rudebeck, G. (1950).** The choice of prey and modes of hunting of predatory birds with special reference to their selective effect. *Oikos* 2(1): 65–88.

**Stiles, F.G. (1978).** Ecological and evolutionary implications of bird pollination. *American Zoologist* 18(4): 715–727.

**Tabachnick, B.G. & L.S. Fidell (2007).** *Using Multivariate Statistics* (5<sup>th</sup> ed.). Pearson College Div. New York, 980 pp

**Trivedy, R.K. & P.K. Goel (1984).** *Chemical and Biological Methods for Water Pollution Studies*. Environmental Publications, Karad, 215 pp.



Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK  
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India  
Dr. John Noyes, Natural History Museum, London, UK  
Dr. Albert G. Orr, Griffith University, Nathan, Australia  
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium  
Dr. Nancy van der Poorten, Toronto, Canada  
Dr. Karen Schnabel, NIWA, Wellington, New Zealand  
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India  
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India  
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India  
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India  
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India  
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India  
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain  
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong  
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India  
Dr. M. Nithyanandan, Environmental Department, La Ala Al Kuwait Real Estate. Co. K.S.C., Kuwait  
Dr. Himender Bharti, Punjabi University, Punjab, India  
Mr. Purnendu Roy, London, UK  
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan  
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India  
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam  
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India  
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore  
Dr. Lionel Monod, Natural History Museum of Geneva, Genève, Switzerland.  
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India  
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil  
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany  
Dr. James M. Carpenter, American Museum of Natural History, New York, USA  
Dr. David M. Claborn, Missouri State University, Springfield, USA  
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand  
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil  
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India  
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia  
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia  
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA  
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India  
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia  
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia  
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.  
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan  
Dr. Keith V. Antioch, California, USA  
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA  
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic  
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway  
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India  
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India  
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

#### Fishes

Dr. Neelesh Dahanukar, IISER, Pune, Maharashtra, India  
Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México  
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore  
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India  
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK  
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India  
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia  
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India  
Dr. Akhilesh K.V., ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India  
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India  
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

#### Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India  
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

#### Reptiles

Dr. Gernot Vogel, Heidelberg, Germany  
Dr. Raju Vyas, Vadodara, Gujarat, India  
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.  
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey  
Prof. Chandrashekher U. Rixonker, Goa University, Taleigao Plateau, Goa, India  
Dr. S.R. Ganesh, Chennai Snake Park, Chennai, Tamil Nadu, India  
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

**Journal of Threatened Taxa** is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

#### Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia  
Mr. H. Biju, Coimbatore, Tamil Nadu, India  
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK  
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India  
Dr. J.W. Duckworth, IUCN SSC, Bath, UK  
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India  
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India  
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India  
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India  
Mr. J. Praveen, Bengaluru, India  
Dr. C. Srinivasulu, Osmania University, Hyderabad, India  
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA  
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia  
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel  
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands  
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK  
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK  
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India  
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia  
Dr. Simon Dowell, Science Director, Chester Zoo, UK  
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal  
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA  
Dr. P.A. Azeem, Coimbatore, Tamil Nadu, India

#### Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy  
Dr. Anwaruddin Chowdhury, Guwahati, India  
Dr. David Mallon, Zoological Society of London, UK  
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India  
Dr. Angie Appel, Wild Cat Network, Germany  
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India  
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK  
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA  
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.  
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India  
Dr. Mewa Singh, Mysore University, Mysore, India  
Dr. Paul Racey, University of Exeter, Devon, UK  
Dr. Honnavalli N. Kumara, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India  
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India  
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy  
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India  
Dr. H. Raghuram, The American College, Madurai, Tamil Nadu, India  
Dr. Paul Bates, Harison Institute, Kent, UK  
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA  
Dr. Dan Challender, University of Kent, Canterbury, UK  
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK  
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA  
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India  
Prof. Karan Bahadur Shah, Budhanilkantha Municipality, Kathmandu, Nepal  
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia  
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

#### Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)  
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)  
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)  
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)  
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)  
Dr. Rayanna Helleni Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil  
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand  
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa  
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India  
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India  
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India  
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka  
Dr. Bharat Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

#### Reviewers 2020–2022

Due to paucity of space, the list of reviewers for 2018–2020 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:  
The Managing Editor, JoTT,  
c/o Wildlife Information Liaison Development Society,  
43/2 Varadarajulu Nagar, 5<sup>th</sup> Street West, Ganapathy, Coimbatore,  
Tamil Nadu 641006, India  
ravi@threatenedtaxa.org

## Communications

### Presence of medium and large sized terrestrial mammals highlights the conservation potential of Patharia Hill Reserve in Bangladesh

– M. Aminur Rahman, Ai Suzuki, M. Sunam Uddin, M. Motalib, M. Rezaul Karim Chowdhury, Ameer Hamza & M. Abdul Aziz, Pp. 23283–23296

### Diversity and abundance of aquatic birds in Koonthankulam village pond, Tamil Nadu, India

– Selvam Muralikrishnan, Esakkimuthu Shanmugam, Natarajan Arun Nagendran & Duraisamy Pandiaraja, Pp. 23297–23306

### Plastral deossification zones in the Endangered Spiny Hill Turtle *Heosemys spinosa* (Testudines: Geoemydidae) on Borneo

– Siti Nor Baizurah & Indraneil Das, Pp. 23307–23314

### Addition of four new records of pit vipers (Squamata: Crotalinae) to Manipur, India

– Premjit Singh Elangbam, Lal Biakzuala, Parag Shinde, Ht. Decemson, Mathipi Vabeiryureilai & Hmar Tlawmte Lalremsanga, Pp. 23315–23326

### Addition to the Odonata fauna of Tripura, India

– Dhiman Datta, B.K. Agarwala & Joydeb Majumder, Pp. 23327–23337

### Occurrence and distribution of two new libellulids (Odonata: Insecta) of the Kashmir Valley, India: *Orthetrum sabina* (Drury, 1770) and *Palpopleura sexmaculata* (Fabricius, 1787)

– Tahir Gazanfar & Mehreen Khaleel, Pp. 23338–23343

### Rayed Thistle Fly *Tephritis cometa* Loew (Diptera: Tephritidae) a new record to India

– Rayees Ahmad, Tariq Ahmad & Barkat Hussain, Pp. 23344–23349

### New state records of some Dermaptera De Geer, 1773 (Insecta) species in India

– Tanusri Das, Kochumackel George Emiliyamma & Subhankar Kumar Sarkar, Pp. 23350–23358

### Moth diversity of Guindy, Chennai, India and DNA barcoding of selected erebid moths

– Seeramulu Bhavaragavan, Mani Meenakumari, Ramanathan Nivetha & Sundaram Janarthanan, Pp. 23359–23372

### New record of the sphingid moth *Acherontia styx* Westwood, its parasitoid *Trichogramma achaearae* in *Jasmine Jasminum sambac* L., and its bioecology

– I. Merlin K. Davidson, Pp. 23373–23381

### Identification and phylogenetic analysis of various termite species distributed across southern Haryana, India

– Bhanupriya, Shubhankar Mukherjee, Nidhi Kakkar & Sanjeev K. Gupta, Pp. 23382–23396

### Survey of Black Band Disease-affected scleractinian corals via drone-based observations in Okinawa, Japan

– Rocktim Ramen Das, Parviz Tavakoli-Kolour, Sanaz Hazraty-Kari & James Davis Reimer, Pp. 23397–23402

### Trace elements in *Penaeus* shrimp from two anthropized estuarine systems in Brazil

– Ana Paula Madeira Di Beneditto, Inácio Abreu Pestana & Cássia de Carvalho, Pp. 23403–23407

### Aquatic Hemiptera inhabiting rice fields in Karaikal, Puducherry, India

– M. Kandibane & L. Gopianand, Pp. 23408–23415

### Leaf defoliation and *Tabernaemontana rotensis* (Asterids: Gentianales: Apocynaceae) flower induction and fruit development

– Thomas E. Marler, Pp. 23416–23424

## Short Communications

### First record and DNA barcode of a scarab beetle, *Adoretus kanarensis* Arrow, 1917 (Coleoptera: Scarabaeidae: Rutelinae), from Maharashtra, India

– Pranil Jagdale, Sujata Magdum, Aparna Sureshchandra Kalawate, Swapnil Kajale & Yogesh Shouche, Pp. 23425–23430

### New record of *Lucilia cuprina* (Wiedemann, 1830) (Diptera: Calliphoridae) from the Trans-Himalayan Region, cold arid desert of Kargil Ladakh, India

– Mohd Hussain, Altaf Hussain Mir, Hidayatullah Tak & Nassreen Fatima Kacho, Pp. 23431–23435

### On the occurrence of *Nitella myriotricha* A.Braun ex Kützing, 1857 ssp. *acuminata* D.Subramanian, 1999 (Charophyceae: Charales: Characeae), from eastern India

– Kailash Mondal & Jai Prakash Keshri, Pp. 23436–23440

## Notes

### Dark Clouds Ahead? Anecdotal evidence for an illegal live trade in Sunda *Neofelis diardi* and Indochinese *N. nebulosa* Clouded Leopards (Mammalia: Carnivora: Felidae)

– Anthony J. Giordano, Leah M. Winstead, Muhammad Ali Imron, Rustam, Jephte Sompud, Jayaraj Vijaya Kumaran & Kurtis Jai-Chyi Pei, Pp. 23441–23445

### Further photographic record of Asiatic Brush-tailed Porcupine *Atherurus macrourus* Linnaeus, 1758 (Mammalia: Rodentia: Hystricidae) from Manas National Park, Assam, India

– Urjit Bhatt, Bilal Habib & Salvador Lyngdoh, Pp. 23446–23448

### Predation of the Nicobar Shrew *Crocidura nicobarica* by a Cattle Egret *Bubulcus ibis*

– G. Gokulakrishnan, C.S. Vishnu & Manokaran Kamalakkannan, Pp. 23449–23451

### War prompts distress symptoms in Israeli Blind Snake

– Shahar Dubiner, Shai Meiri & Eran Levin, Pp. 23452–23454

### Further distribution records of *Varadia ambolensis* (Stylommatophora: Helicarionoidea) from the state of Goa

– Nitin Sawant, Shubham Rane, Sagar Naik, Seema Vishwakarma & Mayur Gawas, Pp. 23455–23457

### *Eleocharis acutangula* ssp. *neotropica* D.J.Rosen (Cyperaceae): a new record for southern Western Ghats, India

– Kavya K. Nair & A.R. Viji, Pp. 23458–23460

## Book Review

### Putting wetland science to practice: a review

– Review by Tiasa Adhya & Partha Dey, Pp. 23461–23462

## Publisher & Host

