Journal of Threatened Taxa | www.threatenedtaxa.org | 26 September 2022 | 14(9): 21870–21890

 

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) 

https://doi.org/10.11609/jott.5916.14.9.21870-21890

#5916 | Received 27 March 2020 | Final received 12 August 2022 | Finally accepted 23 August 2022

 

 

Invasive alien plant species of Hassan District, Karnataka, India

 

G.M. Prashanth Kumar 1 & Shiddamallayya Nagayya 2

 

1 Department of Botany, Post Graduate Centre, University of Mysore, Hassan, Karnataka 573220, India.

2 Regional Ayurveda Research Institute (Unit of C.C.R.A.S, Ministry of AYUSH), Itanagar, Arunachal Pradesh 791111, India.

1 gmpbelur@gmail.com, 2 snmathapati@gmail.com (corresponding author)

 

Abstract: This study was undertaken to document alien and invasive flowering plant species in the Western Ghats (Hassan district, Karnataka, India), with background information on family, habit, habitat, longevity, nativity, and uses. A total of 312 alien species belonging to 236 genera in 79 families are listed. The majority belong to family Asteraceae (36 species), followed by Fabaceae (21 species), and Amaranthaceae (17 species). Herbs constitute the majority (59%) of alien species followed by shrubs (17 %). Around 36% the alien taxa are native to tropical America. Of 314 alien species, 122 were intentional introductions, with a majority (39%) introduced for ornamental purposes; 24% of species have naturalized, while 33% display as invasive. There is an urgent need to gather regional data on the diversity of invasive alien plant species in order to study the impact on native vegetation and biodiversity.

 

Keywords: Exotic, naturalized species, ornamental, plant diversity, threats, Western Ghats.

 

Editor: Anonymity requested.   Date of publication: 26 September 2022 (online & print)

 

Citation: Kumar, G.M.P. & S. Nagayya (2022). Invasive alien plant species of Hassan District, Karnataka, India. Journal of Threatened Taxa 14(9): 21870–21890. https://doi.org/10.11609/jott.5916.14.9.21870-21890

 

Copyright: © Kumar & Nagayya 2022. Creative Commons Attribution 4.0 International License.  JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

 

Funding: No funding received for this research paper.

 

Competing interests: The authors declare no competing interests.

 

Author details: G.M. Prashanth Kumar has interest in plant taxonomy and ethnobotany. Shiddamallayya Nagayya is a higher plant taxonomist in the area of systematics and ethnobotany.

 

Author contribution: GMP carried out the floristic study, collected the data and wrote the manuscript. SN identified the species, interpreted the data and designed the manuscript. Both authors have read and approved the final manuscript.

 

Acknowledgements:  Authors are grateful to Hassan district local people for their support and encouragement during the survey of invasive alien plant species. We thank the Director-General of CCRAS, New Delhi, and the University of Mysore, Mysore, for their encouragement and support.

 

 

Introduction

 

The increase in human activity and increased international trade, travel, and transport beyond biogeographic barriers has led to the introduction and establishment of invasive alien species in new regions (Dawson et al. 2017). Biological invasions have received much consideration due to the potential threats they impose on native species, natural systems, ecosystem processes & functioning, environmental quality, and human health (Pyšek & Richardson 2010; Simberloff et al. 2013; Jones & McDermott 2018; Pearson et al. 2018; Petruzzella et al. 2018; Bartz & Kowarik 2019; Rai & Singh 2020). Successful plant invasions are attributed to the interaction between the exotic plants and resident plant communities (Gallien & Carboni 2017). Many factors influence invasion success, including phenotypic plasticity, dispersal benefits from destructive foraging activities, wide geographic range, vegetative reproduction, fire tolerance, and superior competitive ability compared to native flora (Sharma et al. 2005). Invasive alien plants may outperform native species due to the absence of natural enemies in the introduced range (Aguilera 2011). Moreover, invasive plants display characteristics such as high competitive ability and efficient resource utilization (Baker 1965; Levine 2000; Petruzzella et al. 2018).

The introduction of non-native species into new habitats is largely due to short-term economic benefits (MeNeely 2001), therefore, most of the issues related to invasive plants can be linked to the intended or unintended consequences of economic activities (Perrings et al. 2002). Globalization and rapid modification of natural habitats have triggered a massive spread of plant species to areas outside their native ranges (van Kleunen et al. 2015). On the continental and global scale, species invasions have diminished the regional distinctiveness of flora and fauna (Vitousek et al. 1997). At least 10% of the world’s vascular plants (300,000) have the potential to invade other ecosystems and affect native biota in direct or indirect ways (Singh et al. 2006). About 18% of the Indian flora are aliens, of which 55% are native to the Americas, 30% to Asia, and to 15% Europe & central Asia (Nayar 1977; Singh et al. 2010). Many invasive alien plants confer economic benefits; for example, Lantana camara is used by several local villages in India who use it for furniture and pulp making (Kannan et al. 2014); however, it remains a serious invader causing problems for indigenous flora and significant losses of ecosystem services compared to benefits.

Many invasive species have severe negative impacts. For example, Ageratum conyzoides, Chromolaena odorata, and Parthenium hysterophorus are considered invasive transformer species that lack natural enemies and have fast-spreading ability, allelopathic effects on other plants, and strong competitiveness with crops, while posing health hazard to humans and animals (Raghubanshi et al. 2005; Suthari et al. 2016). Some cultivated alien species provide food, medicine, fuel, & fodder to local communities (Kull et al. 2007) and some are used in the preparation of Ayurvedic formulations (Shiddamallayya et al. 2010). It is estimated that as many as 50% of invasive species, in general, can be classified as ecologically harmful, based on their actual impacts (Richardson et al. 2000).

There is a need for an authoritative database on alien and invasive alien plant species to monitor the spread and impact in various regions and for plan appropriate management strategies. State and regional floras in the country rarely indicate the native or alien status of the species listed therein. In some cases, naturalized alien species are treated as native in floristic documents (Khuroo et al. 2012). Many species recorded as aliens in different regions of the country, but whose native range falls within the country’s political boundary, have been excluded in the present study. Example is the Himalayan Chir Pine Pinus roxburghi recorded as ’exotic’ in southern India (Matthew 1969). Similarly, Nyctanthes arbor-tristis is a Himalayan native introduced for various reasons to the rest of the country, and many other species that have a within-the-country origin should also be regarded as alien. The present study reports on alien and invasive flowering plant species in the Hassan district of Karnataka.

 

 

Materials and Methods

 

Study area

Hassan district is located in the southern part of Karnataka state in India, situated between 120 13’, 130 33’ N & 750 33’, 760 38’ E. Hassan district begins at the base of the steep Western Ghats and continues into the gently rolling Deccan plateau. The district shows wide variations in climate and vegetation. The evergreen and semi-evergreen forests in the district are concentrated in the Western Ghats region of Yeslur and Sakaleshpura, and are commonly known as wet evergreen tropical rain forest. Dry deciduous forests dominate the plains, also known as Maidan area (Figure 1).

 

Data collection

Extensive floristic surveys were conducted in a planned manner repeatedly in different seasons to get the maximum representation of alien and invasive alien species in Hassan District. Plant samples were collected from natural habitats, agricultural lands, aquatic, semi-aquatic habitats, marshes, open grasslands, wastelands, roadsides, village ponds, wetlands, railway tracks, riverbanks, reserve forests, slopes, and hilltops. The collected specimens were identified with the help of floras (Saldhana & Nicolson 1976; Saldhana 1984, 1996). Plants were categorized by habit (herb, shrub, climber, and tree) and by habitat (wasteland, cultivated field, aquatic, river & pond banks, forest, and roadside). The plant names were rechecked and authenticated using the plant list (www.theplantlist.org\) and GRIN taxonomy site (http://www.ars-grin.gov/npgs/aboutgrin.html), the synonyms were removed to avoid taxonomic inflation. We followed biogeographic approach in assigning the native ranges to all the species (Khuroo et al. 2012). Only those species whose native ranges fall outside the borders of the Indian subcontinent, namely ‘alien’ species (CBD 2000) were considered in this study. To minimize the error of judgement by earlier studies regarding the alien status, and to cross-check native range records, native ranges for all species were verified with data from the Germplasm Resources Information Network (www.grin.org, http://www.hear.org/pier/, http://www.iucngisd.org/gisd/) and some other published literature (Murthy et al. 2007; Negi & Hajra 2007; Reddy 2008; Reddy et al. 2008; Singh et al. 2010; Wu et al. 2010; Paul 2010; Khuroo et al. 2012; Pyšek et al. 2012).

To further document their status, alien plant species were categorized into casual (Ca), naturalized (Nt), invasive (In), casual or naturalized (Ca/Nt) and naturalized or invasive (Nt/In) as per the earlier studies (Richardson et al. 2000; Pysek et al. 2004; Khuroo et al. 2012). Alien species that may flourish and even reproduce occasionally in an area, but do not form self-replacing populations, and which rely on repeated introductions for their persistence are known as ‘casual’ (Ca). Alien species that reproduce and sustain populations over more than one life cycle and do not necessarily invade natural, semi-natural or human-made ecosystems are known as ‘naturalized’ (Nt). Naturalized alien species that produce reproductive offspring, often in large numbers, at considerable distances from parent plants and thus can spread over a considerable area are referred to as ‘invasive’ (In). Alien species grown or planted and have not yet escaped are referred to as ‘cultivated’ (Cl). Those casual alien species for which the current evidence is insufficient to be recognized as naturalized but have the potential to become naturalized in the near future are referred to as Ca/Nt. Those naturalized alien species for which the current evidence is insufficient to be recognized as invasive, but have the potential to become invasive in the near future are referred to as Nt/In. The purpose of intentional introduction (food, fodder, ornamental, plantation, horticulture, and medicinal) of the alien species were recorded from relevant literature (Sharma & Pandey 1984; Khuroo et al. 2007; Jaryan et al. 2013). Species that have come unintentionally were categorized as ‘unintentional introductions’ (Ui). Literature including unpublished (Singh et al. 2010; Kambhar & Kotresha 2011; Prakash & Balasubramanian 2018) and local communities were consulted for uses. The alien species were analyzed for taxa statistics, habit, habitat, nativity, purpose of introduction, invasive status and use-values. For analysis of habit, the number of species in a particular habit has been divided by the total number of alien species and multiplied by 100. The same follows for habitat, nativity, and invasion status analyses. For analyzing the purpose of introduction, number of species introduced for a particular purpose was divided by the total number of species for which the purpose of introduction is known (122) and then multiplied by hundred. We used Microsoft Excel (version 2013) for the data processing.

 

 

Results and Discussion

 

A total of 312 species in 236 genera and under 79 families were documented as invasive alien plant species. They are shown along with the family name, habit, habitat, nativity, mode of introduction, invasive status, and uses in Table 1 and Images 1–5. The habit-wise distribution of alien species is represented in Figure 2.

Of the species 48% (n = 152) belong to just 10 families. Asteraceae was the dominant family with 36 species (23%) followed by Fabaceae 21 species (13%), Amaranthaceae 17 species (11%), and Poaceae 16 species (10%). Due to their dominance, most of these families have a high number of herbs. The dominance of Fabaceae, which has the ability to fix nitrogen, would aid their colonisation of empty niches. The proportion of alien species to the total species in the respective family in Hassan district is highest for Amaranthaceae (85%) followed by Solanaceae (83.3%) and Asteraceae (47.3%) (Table 2). For India, this is in agreement with Khuroo et al. (2012) and Jaryan et al. (2013). Similar patterns of family dominance in alien floras have been reported in studies from Europe (Lambdon et al. 2008) and China (Weber et al. 2008; Wu et al. 2010). Pysek (1998) found that these families also have the majority of alien species on a worldwide scale. In addition, studies on agricultural weeds found that the Asteraceae and Poaceae families account for the majority of weeds in terms of numbers (Heywood 1989). This could be due to the fact that these families have some of the highest species richness (Rao 1994) and hence have a higher chance of harboring more alien species. Such a family dominance pattern, as Khuroo et al. (2012) pointed out, is more of a depiction of sampling effect. These families are known to have a large number of species, hence an increase in the number of alien species belonging to these families is expected (Khuroo et al. 2012). In Himachal Pradesh also, proportion of alien species relative to the total species in Amaranthaceae (53.3%) followed by Solanaceae (52.9%) and Convolvulaceae (44%) is highest (Jaryan et al. 2013). This is in agreement to the results of Khuroo et al. (2012) for India and Wu et al. (2010) for China. In Kashmir, proportion of alien species relative to the total species in Amaranthaceae (83%) is highest (Khuroo et al. 2007). Interestingly, the Asteraceae and Convolvulaceae families have the biggest numerical contributions (47.3%) in this ranking for Hassan district (Table 2). In the top 10 list of families, Poaceae (11.4%) has the lowest alien species (Table 2). Remarkably, some families comprise only invasive species in Hassan district (e.g., Balsaminaceae, Impatiens balsamina; Ceratophyllaceae, Ceratophyllum demersum; Martyniaceae, Martynia annua). The following genera had highest number of alien species in Hassan district, Solanum (8 species), Ipomoea (7 species), and Euphorbia (6 species), Amaranthus, Alternanthera, & Hibiscus (4 species each). These genera also contribute a good number to the alien flora of India, Europe, and China (Lambdon et al. 2008; Weber et al. 2008; Wu et al. 2010; Khuroo et al. 2012). 

Out of the 36 plant species that are globally recognised as the ‘World’s worst invasive alien species’ (Lowe et al. 2000), 17 are present in India (Khuroo et al. 2012), of which we report the presence of eight in Hassan district: Eichhornia crassipes, Spathodea campanulata, Imperata cylindrica, Opuntia stricta, Clidemia hirta, Lantana camara, Chromolaena odorata, and Rubus ellipticus. Pysek et al. (2017) have identified 11 alien plant species that occur on one-third or more of the globe in terms of the number of regions where they are naturalized, and on at least 35% of the Earth’s land surface. Of these, eight plant species are widely distributed in Hassan district: Bidens pilosa, Chenopodium album, Datura stramonium, Echinochloa crus-galli, Oxalis corniculata, Portulaca oleracea, Ricinus communis, and Sonchus oleraceus. The impact of these species on indigenous flora and invading ecosystems, however, has yet to be studied. The distribution of alien plant species was most abundant in wastelands (34%), followed by cultivated fields (30%), roadsides (14%), river or pond banks (9%), forests (8%), and aquatic systems (4%) (Figure 3). This pattern could be caused by the relative degree of disturbance in various environments, as well as other abiotic and biotic factors. Disturbance alters the physical environment creating open regions and disturbed environmental factors, such as, elevated soil nitrate and increased light and temperature changes, boost seed germination for many species, including exotics. This could allow alien species to establish themselves in ecosystems. Several researchers have discovered that the species composition after disturbance is reasonably predicted based on the seed bank before disturbance. As a result, sampling the pre-disturbance seed bank can provide insight into whether exotics will become abundant at a site in the event of a predicted disturbance (D’antonio & Meyerson 2002).

 We categorized the origin of the reported invasive species into 12 regions, of which tropical America was found to be the origin for 36% (113 species), followed by tropical Africa 15% (48 species), South America 13% (41 species), and tropical Asia (28 species). The other regions, contribibute 2–5 % each to the overall alien flora (Figure 4). The possible explanation for the maximum proportion of species from tropical America can be the higher propagule pressure from different countries, such as Brazil and Mexico, to India via historical trade routes through the human agency of European colonisers and traders, and more or less matching of similar tropical climate (Khuroo et al. 2012). Considering that 36% of species originate in the Americas, the findings of this study are comparable to those reported for China, where 58% of species originate in the Americas (Wu et al. 2010). However, compared to the current study, the percentage of American species in the alien flora of Europe is lower at 34.8% (Lambdon et al. 2008). Because tropical climates have a higher impact on India and China than on Europe, this distinct pattern can be explained.

 Some alien plant species, 36% of those listed for Hassan district, are used for medicinal purposes, followed by vegetables (16%), ornamentals (13%), edible fruits (8%), fodder (4%), timber (2%), and biofuel (1%). A large number of alien plant species benefit Indian agriculture, forestry, and pharmaceutical industries, as well as the Indian medical system (Ayurveda) (Shiddamallayya et al. 2010). Ornamental plants are an important component of the urban environment, as well as a substantial source of invasive species as a result of escapes from private or public gardens (Pyek & Chytr 2014; Pergl et al. 2016). Many taxa first escape and spread in spatially constrained areas around gardens, before spreading and colonising more distant vegetation. The combined impacts of local popularity of a specific taxon, regardless of invasion status, adequate natural & cultural conditions, abundant propagation in cultivation, and easy semi-spontaneous establishment in gardens may result in naturalisation foci (Petrik et al. 2019). Although the majority of alien species grown as garden ornamentals can only survive when planted under careful management, a significant proportion of them manage to escape and establish themselves outside of human control (Pergl et al. 2016). Pyek et al. (2012) found that 56% of the taxa in the Czech Republic’s alien flora were recruited from escaping ornamental plants. Similarly, in the Karnataka district of Gadag, roughly 15% of alien species are employed as ornamentals (Kambhar & Kotresha 2011).

We found that 122 species were intentionally introduced, while the rest are unintentional introductions. The majority of species were introduced for ornamental purposes (47%), followed by food (30%), horticulture (10%), medicinal (9%), fodder (4%), and plantation (2%). The invasion status categorization of Hassan is represented in Figure 5. 

Hassan district is the reservoir of rich flora, and is a significant segment of the global biodiversity hotspot of Western Ghats. Approximately 1,700 vascular plant species found in Hassan district accounts for 75% of the plant species of Karnataka state and 10% of India, which indicates the richness of biological diversity (Saldhana & Nicolson 1978). However, almost 18.4% of Hassan district flora comprises of alien species, which is higher than the 8% of alien plants in Western Ghats region of Karnataka and 6.5% alien species of Karnataka state (Ganeshaiah et al. 2002; Rao 2012). The majority of the alien species belong to the family Asteraceae, and it also contributed most of the exotic weed species in India (Singh et al. 2010; Kambhar & Kotresha 2011; Khuroo et al. 2012).

In concordance with the alien floras of Europe (Lambdon et al. 2008) and China (Wu et al. 2010), Asteraceae is the most species-rich family in the alien flora of India. At the global level, Pysek (1998) found these families to be having the majority of alien species. Studies on agricultural weeds concluded that, numerically, most weeds come from the families Asteraceae (Heywood 1989). Notably, Asteraceae is amongst the largest family in terms of species richness (Rao 1994). Hence, the possibility of contributing more to alien species is also higher (Mack & Erneberg 2002). The introduction of alien plants for ornamental purpose is common across the globe and especially species belongs to the genera Amaranthus, Cascabela, Euphorbia, Ipomoea, and Solanum are some of the commonly preferred ornamental alien species reported in India (Khuroo et al. 2012). Alternanthera philoxeroides powerful aquatic pest has been found in the lakes, ponds, puddles and waterways was considered a highly invasive and spread throughout the country (Maheshwari 1965). Lantana camara, Chromolaena odorata, and Hyptis suaveolens were the most concerning alien invasive plant species in terms of rapid growth, higher density, and frequency in forest areas.

Within the forest, these species were so gregarious in their growth and most ecologically destructive invaders in the Western Ghats region (Muniappan & Viraktamath 1993). The escape of these species into nature, on the other hand, may have serious consequences. Chromolaena odorata is an invasive transformer species in the Old World (Richardson et al. 2000), owing to its lack of natural enemies. It prefers areas of natural or human-induced disturbance, but it can even infiltrate untouched terrain. Subsistence and commercial agriculture, including crops and plantations, grazing pastures, and silviculture, are all affected by Chromolaena odorata. Awanyo et al. (2011) mentioned that the highly invasive Chromolaena odorata grows aggressively and suppresses other vegetation by easily forming a thick cover in a very short time. In another study, the high allelopathic properties of this weed support its gaining dominance in vegetation and in replacing other aggressive invaders such as Lantana camara and Imperata cylindrica in Asia and Africa (Mandal & Joshi 2014). The most common species of invasives in cultivated areas were Celosia argentea and Argemone mexicana, which were so aggressive and opportunistic in invasion that they could even penetrate flourishing crops if regular weeding was neglected. Ageratum conyzoides, Cassia tora, Emilia sonchifolia, Oxalis corniculata, Scoparia dulci, Sonchus oleraceous, and Tridax procumbens are some of the other invasive plant species commonly found in cultivated fields that require constant weeding in practices and act as vectors for transmitting pathogens. Parasitic dodders (Cuscuta spp.) are becoming a severe concern in south Indian agroecosystems, and are increasingly being detected on a wide range of plants across the country.

Ipomoea carnea, Pistia stratiotes, and Eichhornia crassipes have become a nuisance in aquatic ecosystems. They cause hindrance and block drainage and reduces the aesthetic value of open water bodies (Kambhar & Kotresha 2011). The invasion of Eichhornia crassipes into freshwater systems poses a threat to many human uses. Boating access, navigability, and recreation, as well as pipe systems for agriculture, industry, and municipal water supply, are the most direct impacts. Fish catchability and access to fishing grounds are also impacted. Furthermore, Eichhornia crassipes evapotranspiration rates can be higher than open-water evaporation rates. This can be a major issue in water-scarce places and small bodies of water. If it causes changes in fish community composition or modifies the catchability of fished species, it can have a significant impact on fishery (Villamagna & Murphy 2010).

Aside from the negative effects on native flora and the economy, certain alien species were useful to locals. Leafy vegetables included Portulaca oleracea, Chenopodium album, Alternanthera sessilis, Amaranthus spinosus, Digera muricata, and Solanum americanum. In its invaded area in India, Prosopis juliflora grows in forests, wastelands, and at the edges of crop fields, forming pure stands. Farmers retain trees in their fields because their crops grow better under them than in open fields, but they also provide fuel, fodder, charcoal, and lumber (Kaur et al. 2012). Invasive alien plant inventories are one of the most important components for assessing biodiversity and threats to endangered species, as well as providing source data for developing relevant indicators (Pyek et al. 2012; van Kleunen et al. 2015; Latombe et al. 2017). Identifying invasive alien plant species that pose prospective or future threats while they are still in the early stages of invasion is a serious prediction challenge (Lambdon et al. 2008). The findings of this study will raise awareness of invasive alien plants, and the release of this list will encourage more data collection so that the effects of these species can be minimized.

 

 

Conclusion

 

The present paper provides information on the status of alien plant species in Hassan district. It is revealed that over 18% of Hassan district flora comprises of alien species, which is higher than the 8% for the Western Ghats region of Karnataka and 6.5% of alien species in Karnataka state. A majority of the species are of South American origin and have been introduced for ornamental purposes. Our study indicated that the extent and present share of alien species and their naturalization cannot be considered safe for native and endemic flora. This is especially true of Hassan district, which is part of the Western Ghats ‘hotspot’ belt and is globally designated for priority of conservational activities. As most forests of the Western Ghats are already badly affected by the invasion of alien plant species, the need for effective control must be emphasized. This compiled work will fill a significant information gap regarding alien species, and will aid in the development of informed monitoring and management strategies, always preserving site biodiversity and peoples’ cultural diversity in mind, rather than simply the scale of bio-invasion.

 

Table 1. Alien plant species of Hassan District, their source region and uses.

 

 

Accepted name of species

Family

Habit

Longevity

Habitat

Nativity

Purpose of

introduction

Invasive

status

Uses

1

Abelmoschus esculentus (L.) Moench

Malvaceae

H

A

CF

TAF

Fd

Cl

V

2

Acacia auriculiformis L.

Mimosaceae

T

P

AR

AU

Ui

Ca/Nt

W

3

Acacia farnesiana (L.) Willd.

Mimosaceae

T

P

AR

SAM

Ui

In

M

4

Acanthospermum hispidum DC.

Asteraceae

H

A

W

BR

Ui

In

M

5

Achyranthes aspera L.

Amaranthaceae

H

A

W

AS

Ui

In

M

6

Achyranthes bidentata Blume

Amaranthaceae

H

P

AR

AS

Ui

Nt

M

7

Acmella uliginosa (Sw.) Cass.

Asteraceae

H

A

W

TAM

Ui

Nt

Nk

8

Adenostemma lavenia (L.) Ktze.

Asteraceae

H

A

RB

SAM

Ui

In

Nk

9

Aeschynomene indica L.

Fabaceae

H

A

AQ

AU

Ui

In

Nk

10

Agave americana L.

Asparagaceae

S

P

AR

TAM

Ui

Nt

R

11

Agave sisalana Perrine.

Asparagaceae

S

P

W

MX

Ui

Cl

R

12

Ageratum conyzoides (L.) L.

Asteraceae

H

A

W

TAM

Or

In

M

13

Ageratum houstonianum Mill.

Asteraceae

H

A

W

TAM

Ui

In

Nk

14

Albizia lebbeck Benth.

Mimosaceae

T

P

F

AS

Pl

Nt

W

15

Albizia saman (Jacq.) Merr.

Mimosaceae

T

P

AR

TAM

Ui

Ca/Nt

W

16

Allamanda cathartica L.

Apocynaceae

C

P

CF

TAM

Or

Cl

Or

17

Allium cepa L.

Amaryllidaceae

H

A

CF

AS

Fd

Cl

V

18

Allium sativum L.

Amaryllidaceae

H

A

CF

AS

Fd

Cl

V

19

Aloe vera (L.) Burm.f.

Liliaceae

H

P

W

MR

M

Ca/Nt

M

20

Alternanthera paronychioides A.St.-Hil.

Amaranthaceae

H

P

RB

TAM

Ui

Nt/In

M

21

Alternanthera philoxeroides (Mart.) Griseb.

Amaranthaceae

H

P

W

TAM

Ui

Nt/In

Nk

22

Alternanthera pungens Kunth

Amaranthaceae

H

P

W

TAM

Ui

Nt/In

M

23

Alternanthera sessilis (L.) R.Br. ex DC.

Amaranthaceae

H

P

RB

TAM

Ui

Nt

V

24

Amaranthus caudatus L.

Amaranthaceae

H

A

CF

SAM

Fd

In

V

25

Amaranthus spinosus L.

Amaranthaceae

H

A

CF

TAM

Ui

In

V

26

Amaranthus tricolor L.

Amaranthaceae

H

A

CF

AS

Fd

Ca

V

27

Amaranthus viridis L.

Amaranthaceae

H

A

CF

TAM

Ui

In

V

28

Ammannia baccifera L.

Lythraceae

H

A

RB

AU

Ui

Nt

Nk

29

Anacardium occidentale L.

Anacardiaceae

T

P

W

BR

Ht

Nt

M

30

Anagallis arvensis L.

Primulaceae

H

A

RB

EU

Ui

In

Nk

31

Ananas comosus (L.) Merr.

Bromeliaceae

H

P

CF

SAM

Ht

Cl

Ef

32

Anethum graveolens L.

Apiaceae

H

A

CF

AS

Or

Nt

V

33

Annona muricata L.

Annonaceae

T

P

CF

TAM

Ht

Cl

Ef

34

Annona reticulata L.

Annonaceae

T

P

F

TAM

Ht

Cl

Ef

35

Annona squamosa L.

Annonaceae

T

P

F

WI

Ht

Cl

Ef

36

Antigonon leptopus Hook. & Arn.

Polygonaceae

C

P

AR

TAM

Or

Ca/Nt

Or

37

Arachis hypogaea L.

Fabaceae

H

A

CF

BR

Fd

Cl

Ol

38

Areca catechu L.

Arecaceae

T

P

CF

AS

Pl

Nt

En

39

Argemone mexicana L.

Papaveraceae

H

A

W

NAM

M

In

M

40

Aristolochia littoralis Parodi

Aristolochiaceae

H

P

W

BR

Ui

Cl

Or

41

Arthraxon lancifolius (Trin.) Hochst.

Poaceae

H

A

W

TAF

Ui

Nt

V

42

Artocarpus altilis (Parkinson ex F.A.Zorn) Fosberg

Moraceae

T

P

W

SEA

Fd

Cl

Ef

43

Asclepias curassavica L.

Apocynaceae

H

P

AR

TAM

Ui

Ca/Nt

Nk

44

Averrhoa bilimbi L.

Oxalidaceae

T

P

AR

TAM

Ui

Cl

Ef

45

Averrhoa carambola L.

Oxalidaceae

T

P

AR

TAM

Ui

Cl

Ef

46

Bacopa monnieri Pennell

Scrophulariaceae

H

A

RB

TAM

Ui

In

V

47

Balanites aegyptiaca (L.) Delile

Zygophyllaceae

S

P

F

TAF

Ui

Nt

M

48

Bambusa vulgaris Schrad.

Poaceae

S

P

AR

SEA

Or

Ca/Nt

Or

49

Basella alba L.

Basellaceae

C

A

CF

TAF

M

Nt

M

50

Benincasa hispida (Thunb.) Cogn.

Cucurbitaceae

C

A

CF

SEA

Fd

Cl

V

51

Beta vulgaris L.

Amaranthaceae

H

A

CF

EU

Ht

Cl

V

52

Bidens biternata (Lour.) Merr. & Sherff

Asteraceae

H

A

CF

TAM

Ui

Ca/Nt

M

53

Bidens pilosa L.

Asteraceae

H

A

W

SAM

Ui

In

Nk

54

Biophytum sensitivum DC.

Oxalidaceae

H

A

W

SEA

Ui

In

M

55

Bixa orellana L.

Bixaceae

T

P

CF

BR

Ui

Cl

M

56

Blainvillea acmella (L.) Philipson

Asteraceae

H

A

W

TAM

Ui

In

M

57

Blumea lacera (Burm.f.) DC.

Asteraceae

H

A

W

TAM

Ui

In

M

58

Blumea obliqua (L.) Druce

Asteraceae

H

A

W

TAM

Ui

In

Nk

59

Bougainvillea spectabilis Willd.

Nyctaginaceae

S

P

AR

TAM

Or

Cl

Or

60

Brassica nigra (L.) K.Koch

Brassicaceae

H

A

CF

EU

Fd

Cl

Ol

61

Brassica oleracea L.

Brassicaceae

H

A

CF

EU

Fd

Cl

V

62

Breynia vitis-idea (Burn.f.) Fisch

Euphorbiaceae

S

A

CF

WI

Ui

Nt

Nk

63

Brugmansia suaveolens Bercht. & K.Presl.

Solanaceae

S

P

AR

BR

UI

Nt

Nk

64

Bryophyllum pinnatum (Lam.) Oken

Crassulaceae

H

A

W

TAF

Ui

Nt/In

M

65

Caesalpinia pulcherrima (L.) Sw.

Caesalpiniaceae

S

P

CF

TAM

Or

Cl

Or

66

Cajanus cajan (L.) Millsp.

Fabaceae

H

A

CF

TAF

Fd

Cl

ES

67

Caladium bicolor (Aiton) Vent.

Araceae

H

A

RB

TAM

Or

Cl

Or

68

Callistemon viminalis (Sol. ex Gaertn.) G.Don ex Loudon

Myrtaceae

T

P

CF

AU

Or

Ca/Nt

Or

69

Calotropis gigantea (L.) Dryand.

Apocynaceae

S

P

W

TAF

Ui

In

M

70

Camellia sinensis (L.) Kuntze

Theaceae

S

P

CF

AS

Fd

Ca/Nt

Br

71

Canna indica L.

Cannaceae

H

P

CF

TAM

M

Nt

M

72

Capsicum annuum L.

Solanaceae

H

P

CF

MX

Ht

Cl

V

73

Cardiospermum halicacabum L.

Sapindaceae

C

P

W

SAM

Ui

In

M

74

Carica papaya L.

Caricaceae

T

P

CF

SAM

Ht

Cl

Ef

75

Carmona retusa (Vahl) Masamune

Boraginaceae

H

A

F

SEA

Ui

Ca/Nt

M

76

Cascabela thevetia (L.) Lippold

Apocynaceae

T

P

CF

TAM

Or

Cl

Or

77

Cassia fistula L.

Caesalpiniaceae

T

P

F

AS

M

Nt

M

78

Cassytha filiformis L.

Lauraceae

C

P

P

AU

Ui

Nt

M

79

Casuarina equisetifolia L.

Casuarinaceae

T

P

CF

TAM

Ui

Nt

W

80

Catharanthus pusillus (Murray) G.Don

Apocynaceae

H

A

CF

TAM

Or

In

M

81

Catharanthus roseus (L.) G.Don

Apocynaceae

H

A

W

TAM

Or

In

M

82

Celosia argentea L.

Amaranthaceae

H

A

CF

TAM

Fd

Ca

V

83

Ceratophyllum demersum L.

Ceratophyllaceae

H

P

AQ

NAM

Ui

In

M

84

Cereus repandus (L.) Mill.

Cactaceae

S

P

AR

TAM

Ui

Nt

M

85

Cestrum nocturnum L.

Solanaceae

S

P

AR

WI

Or

Ca/Nt

Or

86

Chenopodium album L.

Amaranthaceae

H

A

CF

EU

Fd

In

V

87

Chenopodium ambrosioides L.

Amaranthaceae

H

A

W

TAM

Ui

In

Fo

88

Chloris barbata Sw.

Poaceae

H

A

W

TAM

Ui

Nt

Fo

89

Chromolaena odorata (L.) RM.King & H.Rob.

Asteraceae

H

P

W

TAM

Ui

In

M

90

Cicer arietinum L.

Fabaceae

H

A

CF

AS

Fd

Cl

Es

91

Citrullus lanatus (Thunb.) Matsum. & Nakai

Cucurbitaceae

C

A

CF

SAM

Fd

Cl

Ef

92

Cleome monophylla L.

Cleomaceae

H

A

AR

TAF

Ui

Nt

M

93

Cleome viscosa L.

Cleomaceae

H

A

W

TAM

Ui

Nt

M

94

Clidemia hirta (L.) D. Don

Melastomataceae

H

P

W

TAM

Ui

Nt

M

95

Clitoria ternatea L.

Fabaceae

C

A

W

TAM

M

Nt

M

96

Coffea arabica L.

Rubiaceae

S

P

CF

TAF

Fd

Cl

Br

97

Coldenia procumbens L.

Boraginaceae

H

A

W

NAM

Ui

Nt/In

M

98

Colocasia esculenta (L.) Schott

Araceae

H

A

RB

AS

UI

Nt

V

99

Corchorus aestuans L.

Malvaceae

H

A

W

TAM

Ui

Nt

M

100

Corchorus trilocularis L.

Malvaceae

H

A

W

TAF

Ui

In

M

101

Coriandrum sativum L.

Apiaceae

H

A

CF

AS

Fd

Cl

V

102

Cosmos bipinnatus Cav.

Asteraceae

H

A

CF

TAM

Or

Nt/In

Nk

103

Couroupita guianensis Aubl.

Lecythidaceae

T

P

AR

SAM

Ui

Cl

M

104

Crassocephalum crepidioides (Benth.)S.Moore

Asteraceae

H

A

F

TAM

Ui

In

Nk

105

Crotalaria pallida Aiton

Fabaceae

H

A

CF

TAM

Ui

Nt

Nk

106

Crotalaria retusa L.

Fabaceae

H

A

CF

TAM

Ui

Nt

Nk

107

Croton bonplandianus Baill.

Euphorbiaceae

H

P

W

SAM

Ui

In

Nk

108

Cucumis melo L.

Cucurbitaceae

C

A

CF

AS

Fd

Cl

Ef

109

Cucurbita maxima Duchesne

Cucurbitaceae

C

A

CF

SAM

Fd

Cl

V

110

Cucurbita pepo L.

Cucurbitaceae

C

A

CF

SAM

Fd

Cl

V

111

Cuscuta reflexa Roxb.

Convolvulaceae

C

P

P

MR

Ui

In

M

112

Cyanthillium cinereum (L.) H.Rob.

Asteraceae

H

A

W

AS

Ui

Nt/In

M

113

Cymbopogon citratus (DC.) Stapf

Poaceae

H

A

CF

SEA

Ui

Ca

Ol

114

Cyperus difformis L.

Cyperaceae

H

A

CF

TAM

Ui

In

Nk

115

Cyperus iria L.

Cyperaceae

H

A

CF

TAM

Ui

Nt

Nk

116

Cyperus rotundus L.

Cyperaceae

H

A

CF

TAF

Ui

In

M

117

Datura metel L.

Solanaceae

S

P

W

TAM

Ui

Ca/Nt

M

118

Datura stramonium L.

Solanaceae

S

P

AR

TAM

Ui

In

M

119

Daucus carota L.

Apiaceae

H

A

CF

NAM

Fd

Cl

V

120

Delonix regia (Hook.) Raf.

Fabaceae

T

P

AR

TAF

Or

Cl

Or

121

Dendrocalamus strictus (Roxb.) Nees

Poaceae

S

P

F

AS

Ui

Nt

V

122

Dentella repens (L.) J.R.Forst. & G.Forst.

Rubiaceae

H

A

RB

AU

UI

Nt

Nk

123

Dicoma tomentosa Cass.

Asteraceae

H

A

W

TAM

Ui

In

M

124

Digera muricata (L.) Mart.

Amaranthaceae

H

A

CF

NAM

Ui

In

V

125

Digitaria longiflora (Retz.) Pers.

Poaceae

H

P

RB

TAF

Ui

Nt

Nk

126

Dinebra retroflexa (Vahl) Panz.

Poaceae

H

A

CF

TAM

Ui

Nt

NK

127

Dioscorea bulbifera L.

Dioscoreaceae

C

P

F

AS

M

Nt

V

128

Duranta erecta L.

Verbenaceae

S

P

CF

TAM

Or

Ca/Nt

Or

129

Echinochloa colona (L.) Link

Poaceae

H

A

W

EU

Fo

Nt

Fo

130

Echinochloa crus-galli (L.) P.Beauv.

Poaceae

H

A

CF

SAM

Fo

Nt

Fo

131

Echinops echinatus Roxb.

Asteraceae

H

A

W

TAF

Ui

Nt

M

132

Eclipta prostrata (L.) L.

Asteraceae

H

A

CF

TAM

Ui

In

M

133

Eichhornia crassipes (Mart.) Solms

Pontederiaceae

H

P

AQ

TAM

Or

In

Nk

134

Eleocharis atropurpurea (Retz.) J.Presl & C.Presl

Cyperaceae

H

A

AQ

SAM

Ui

Nt

Nk

135

Emilia sonchifolia (L.) DC. ex DC.

Asteraceae

H

A

RB

TAM

Ui

In

M

136

Eragrostis papposa (Desf. ex Roem. & Schult.) Steud.

Poaceae

H

A

W

TAF

Ui

Nt

Nk

137

Eryngium foetidum L.

Apiaceae

H

A

W

TAM

UI

Nt/In

V

138

Eucalyptus citriodora Hk

Myrtaceae

T

P

W

AU

Pl

Cl

Ol

139

Euphorbia heterophylla L.

Euphorbiaceae

H

A

CF

TAM

Ui

In

Or

140

Euphorbia hirta L.

Euphorbiaceae

H

A

CF

TAM

Ui

In

M

141

Euphorbia pulcherrima Willd. ex Klotzsch

Euphorbiaceae

S

P

W

MX

Or

Ca/Nt

M

142

Euphorbia thymifolia L

Euphorbiaceae

H

A

W

SAM

Ui

In

Nk

143

Euphorbia tirucalli L.

Euphorbiaceae

S

P

AR

TAM

Ui

Ca/Nt

M

144

Euphorbia umbellata (Pax) Bruyns.

Euphorbiacaeae

S

P

W

TAM

Ui

In

M

145

Ficus carica L.

Moraceae

T

P

CF

EU

Fd

Nt

Ef

146

Fimbristylis dichotoma (L.) Vahl

Cyperaceae

H

A

RB

AS

Ui

Nt

Nk

147

Foeniculum vulgare Mill.

Apiaceae

H

A

CF

MR

Fd

Cl

Es

148

Galinsoga parviflora Cav.

Asteraceae

H

A

RB

TAM

Ui

In

M

149

Glossocardia bosvallia (L.f.) DC.

Asteraceae

H

A

F

WI

Ui

Nt

V

150

Gnaphalium polycaulon Pers.

Asteraceae

H

A

RB

TAM

Ui

In

Nk

151

Gomphrena celosioides Mart.

Amaranthaceae

H

A

W

TAM

Ui

Nt

Nk

152

Gomphrena globosa L.

Amaranthaceae

H

A

CF

TAM

Ui

In

Nk

153

Grangea maderaspatana (L.) Poir.

Asteraceae

H

A

RB

SAM

Ui

In

M

154

Grevillea robusta A.Cunn. ex R.Br.

Proteaceae

T

P

CF

AU

Pl

Cl

W

155

Guizotia abyssinica (L. f.) Cass.

Asteraceae

H

A

CF

TAF

Ui

Cl

Ol

156

Hamelia patens Jacq

Rubiaceae

S

P

AR

BR

Or

Cl

Or

157

Harrisia bonplandii (Parm.) Britton & Rose

Cactaceae

S

P

W

SAM

Ui

Nt

Nk

158

Helianthus annuus L.

Asteraceae

H

A

CF

NAM

Ui

Cl

Ol

159

Hibiscus cannabinus L.

Malvaceae

S

P

CF

SAM

Ui

In

V

160

Hibiscus rosa-sinensis L.

Malvaceae

S

P

CF

AS

Or

Ca

Or

161

Hibiscus sabdariffa L.

Malvaceae

H

P

CF

SAM

Ui

Ca/Nt

V

162

Hibiscus trionum L.

Malvaceae

H

P

W

TAF

Ui

Nt

Nk

163

Hyptis suaveolens (L.) Poit.

Lamiaceae

H

P

AR

SAM

Ui

In

Nk

164

Impatiens balsamina L.

Balsaminaceae

H

A

RB

TAM

Or

Cl

Or

165

Imperata cylindrica (L.) Raeusch.

Poaceae

H

P

W

TAM

Ui

Nt

R

166

Indigofera linifolia (L.f.) Retz.

Fabaceae

H

A

RB

SAM

Ui

Nt

M

167

Indigofera linnaei Ali

Fabaceae

H

A

F

TAF

Ui

In

Nk

168

Ipomoea alba L.

Convolvulaceae

C

A

W

MX

Ui

Cl

Nk

169

Ipomoea batatas (L.) Lam.

Convolvulaceae

C

A

CF

BR

Fd

Cl

V

170

Ipomoea cairica (L.) Sweet

Convolvulaceae

C

A

W

TAF

Ui

Nt

Nk

171

Ipomoea eriocarpa R. Br.

Convolvulaceae

C

A

W

TAF

Or

Ca/Nt

Nk

172

Ipomoea hederifolia L.

Convolvulaceae

C

A

F

TAM

Ui

Nt

M

173

Ipomoea nil (L.) Roth

Convolvulaceae

C

A

W

NAM

Ui

In

Nk

174

Ipomoea obscura (L.) Ker Gawl.

Convolvulaceae

C

P

W

TAF

Ui

In

M

175

Jatropha curcas L.

Euphorbiaceae

S

P

AR

TAM

Or

Nt

Bf

176

Jatropha gossypifolia L.

Euphorbiaceae

S

P

W

TAM

Ui

Ca/Nt

Bf

177

Kigelia pinnata DC

Bignoniaceae

T

P

F

TAF

Or

Ca/Nt

Nk

178

Lablab purpureus (L.) Sweet

Fabaceae

H

A

CF

TAF

Fd

Cl

Ef

179

Lagascea mollis Cav.

Asteraceae

H

A

CF

TAM

Ui

In

Nk

180

Lagenaria siceraria (Molina) Standl.

Cucurbitaceae

C

A

AR

TAF

Ui

Nt

V

181

Lantana camara L.

Verbenaceae

S

P

F

TAM

Or

In

M

182

Lawsonia inermis L.

Lythraceae

S

P

W

TAF

Ui

Nt

M

183

Leonotis nepetifolia (L.) R.Br.

Lamiaceae

H

A

W

TAF

Ui

In

M

184

Linum usitatissimum L.

Linaceae

H

A

CF

EU

Fd

Cl

Es

185

Ludwigia adscendens (L.) H.Hara

Onagraceae

H

A

AQ

TAM

Ui

Nt

Nk

186

Ludwigia octovalvis (Jacq.) P.H.Raven

Onagraceae

H

A

RB

TAF

Ui

Nt

M

187

Ludwigia perennis L.

Onagraceae

H

A

RB

TAF

Ui

Nt

M

188

Macrotyloma uniflorum (Lam.) Verdc.

Fabaceae

H

A

CF

TAF

Fd

Cl

V

189

Malvastrum coromandelianum (L.) Garcke

Malvaceae

H

A

W

TAM

Ui

In

M

190

Manihot esculenta Crantz.

Euphorbiaceae

T

P

CF

SAM

Fd

Cl

V

191

Manihot glaziovii Muell. Arg.

Euphorbiaceae

T

P

CF

BR

Ui

Ca/Nt

Nk

192

Manilkara zapota (L.) P.Royen

Sapotaceae

S

P

CF

TAM

Ht

Cl

Ef

193

Martynia annua L.

Martyniaceae

H

P

W

NAM

Or

In

M

194

Mecardonia procumbens (Mill.) Small

Plantaginaceae

H

A

W

TAM

Ui

In

Nk

195

Melia azedarach L.

Meliaceae

T

P

AR

AS

M

Nt

W

196

Melochia corchorifolia L.

Sterculiaceae

H

P

F

TAM

Ui

In

V

197

Mentha arvensis L.

Lamiaceae

H

A

W

AS

Ui

Ca/Nt

M

198

Merremia gangetica Cufod.

Convolvulaceae

H

A

W

TAF

Ui

Nt

M

199

Millingtonia hortensis L. f.

Bignoniaceae

T

P

AR

AS

Ui

Ca/Nt

Or

200

Mimosa pudica L.

Mimosaceae

H

P

CF

BR

Ui

In

M

201

Mirabilis jalapa L.

Nyctaginaceae

H

A

W

SAM

Or

Nt

Or

202

Monochoria vaginalis (Burm.f.) C.Presl.

Pontederiaceae

H

P

RB

TAM

Ui

In

M

203

Moringa oleifera Lam.

Moringaceae

T

P

CF

NAM

Ht

Ca/Nt

V

204

Morus alba L.

Moraceae

S

P

CF

AS

Ht

Nt

Ef

205

Muntingia calabura L.

Muntingiaceae

T

P

AR

TAM

Or

Cl

Ef

206

Mussaenda frondosa L.

Rubiaceae

S

P

F

TAF

Ui

Cl

M

207

Nerium oleander L.

Apocynaceae

S

P

CF

EU

Or

Ca/Nt

Or

208

Nicandra physalodes (L.) Gaertn.

Solanaceae

H

A

W

SAM

Or

Ca

M

209

Ocimum americanum L.

Lamiaceae

H

A

W

TAM

Ui

In

M

210

Opuntia ficus-indica (L.) Mill.

Cactaceae

S

P

F

NAM

Ui

Nt/In

Ef

211

Opuntia stricta Haw. Var. dillenii (Ker Gawl.)

Cactaceae

S

P

F

TAM

Ui

Ca/Nt

Ef

212

Oxalis corniculata L.

Oxalidiaceae

H

P

CF

EU

Ui

In

M

213

Oxalis latifolia Kunth

Oxalidaceae

H

A

W

BR

Ui

In

V

214

Pandanus odorifer (Forssk.) Kuntze

Pandanaceae

S

P

RB

SEA

Ui

Cl

M

215

Parthenium hysterophorus L.

Asteraceae

H

A

W

TAM

Ui

In

Nk

216

Passiflora foetida L.

Passifloraceae

C

P

W

SAM

Or

Cl

Or

217

Passiflora subpeltata Ortega

Passifloraceae

C

A

W

TAM

Ui

Nt

Nk

218

Peltophorum pterocarpum (DC.) Backer ex K. Heyne

Caesalpiniaceae

T

P

AR

AS

Ui

Ca/Nt

W

219

Persicaria hydropiper (L.) Delarbre

Polygonaceae

H

P

RB

EU

Fd

In

Nk

220

Phaseolus vulgaris L.

Fabaceae

H

A

CF

SAM

Fd

Cl

Es

221

Phoenix sylvestris (L.) Roxb.

Arecaceae

T

P

RB

TAM

Ui

Ca/Nt

Ef

222

Phyla nodiflora (L.) Greene

Verbenaceae

H

A

AQ

SAM

Ui

Ca/Nt

Nk

223

Phyllanthus acidus (L.) Skeels

Phyllanthaceae

T

P

AR

BR

Ui

Cl

Ef

224

Phyllanthus amarus Schumach. & Thonn.

Phyllanthaceae

H

A

W

TAM

Ui

Nt

M

225

Physalis minima L.

Solanaceae

H

A

W

NAM

M

In

Ef

226

Pistia stratiotes L.

Araceae

H

P

AQ

TAM

Ui

In

M

227

Pisum sativum L.

Fabaceae

H

A

CF

TAM

Ht

Cl

Es

228

Pithecellobium dulce (Roxb.) Benth.

Mimosaceae

T

P

W

TAM

Ui

Nt

Ef

229

Plumbago zeylanica L.

Plumbaginaceae

S

P

W

TAF

Or

Cl

M

230

Plumeria alba L.

Apocynaceae

T

P

W

TAM

Or

Cl

Or

231

Portulaca oleracea L

Portulacaceae

H

A

W

SAM

Fd

In

V

232

Portulaca pilosa L.

Portulacaceae

H

A

W

SAM

Or

In

M

233

Portulaca quadrifida L.

Portulacaceae

H

A

W

TAM

Ui

In

M

234

Potamogeton nodosus Poir.

Potamogetonaceae

H

P

AQ

TAM

Ui

Nt

V

235

Prosopis juliflora (S.w.) DC

Mimosaceae

T

P

W

TAM

UI

Nt

M

236

Psidium guajava L.

Myrtaceae

S

P

CF

SAM

Ht

Nt

Ef

237

Punica granatum L.

Lythraceae

T

P

CF

AS

Ht

Cl

Ef

238

Pyrostegia venusta (Ker Gawl.) Miers

Bignoniaceae

C

P

AR

BR

Or

Cl

Or

239

Raphanus sativus L.

Brassicaceae

H

A

CF

TAF

Fd

Cl

V

240

Ricinus communis L

Euphorbiaceae

S

A

W

TAF

Fd

In

Ol

241

Rosa multiflora Thunb.

Rosaceae

S

P

RB

AS

Or

Ca/Nt

M

242

Rotala densiflora (Roth) Koehne

Lythraceae

H

A

RB

AS

Ui

Nt

M

243

Rubia cordifolia L.

Rubiaceae

H

P

F

TAF

Ui

Nt

M

244

Rubus ellipticus Smith

Rosaceae

S

P

RB

TAM

Ui

Nt

Ef

245

Ruellia prostrata Poir.

Acanthaceae

H

A

W

TAF

Ui

In

M

246

Ruta graveolens L.

Rutaceae

H

A

W

MR

M

Cl

M

247

Saccharum spontaneum L.

Poaceae

S

P

RB

SEA

Ui

In

Fo

248

Salvia coccinea Buc’hoz ex Etl.

Lamiaceae

H

A

W

SAM

UI

Ca

Nk

249

Scoparia dulcis L.

Plantaginaceae

H

A

RB

TAM

M

In

Fo

250

Sechium edule (Jacq.) Sw.

Cucurbitaceae

C

A

CF

TAM

Ui

Cl

V

251

Senna alata (L.) Roxb.

Caesalpiniaceae

S

A

W

WI

Ui

In

M

252

Senna occidentalis (L.) Link

Caesalpiniaceae

S

P

W

SAM

Ui

In

M

253

Senna sophera (L.) Roxb.

Caesalpiniaceae

H

A

AR

WI

Ui

Nt/In

M

254

Senna surattensis (Burm.f.) H.S.Irwin & Barneby

Caesalpiniaceae

T

P

F

SEA

Ui

Cl

Nk

255

Senna tora (L.) Roxb.

Caesalpiniaceae

H

A

W

SAM

Ui

In

M

256

Sesamum indicum L.

Pedaliaceae

H

A

CF

TAF

Ui

Cl

Es

257

Sesbania sesban (L.)

Fabaceae

T

P

W

TAF

Ui

Nt

V

258

Setaria italica (L.) P.Beauv.

Poaceae

H

A

CF

TAF

Fo

In

Fo

259

Sida acuta Burm.f.

Malvaceae

H

A

W

TAM

Ui

Nt

M

260

Sida cordata (Burm. f.) Waalk.

Malvaceae

H

A

AR

SAM

Ui

Nt

M

261

Siegesbeckia orientalis L.

Asteraceae

H

A

AR

TAF

Ui

Ca/Nt

Nk

262

Simarouba glauca DC.

Simaroubaceae

T

P

AR

SAM

Pl

Cl

M

263

Solanum americanum Mill.

Solanaceae

H

A

CF

TAM

Ui

In

V

264

Solanum erianthum D.Don

Solanaceae

H

P

F

TAM

Ui

In

M

265

Solanum lycopersicum L.

Solanaceae

H

P

CF

TAM

Ui

In

V

266

Solanum melongena L.

Solanaceae

H

A

CF

TAF

Fd

Cl

V

267

Solanum pimpinellifolium L.

Solanaceae

H

A

W

SAM

Ui

Cl

V

268

Solanum seaforthianum Andrews

Solanaceae

C

P

W

BR

Ui

In

Nk

269

Solanum torvum Sw.

Solanaceae

S

P

AR

WI

Ui

In

M

270

Solanum tuberosum L.

Solanaceae

H

P

CF

SAM

Fd

Cl

V

271

Sonchus oleraceus (L.) L.

Asteraceae

H

A

AR

MR

Ui

In

Nk

272

Sonchus wightianus DC.

Asteraceae

H

A

W

EU

Ui

Nt/In

M

273

Spathodea campanulata Beauv.

Bignoniaceae

T

P

AR

TAF

Or

Ca/Nt

Or

274

Spermacoce hispida L.

Rubiaceae

H

A

W

TAM

Ui

In

M

275

Sphagneticola calendulacea (L.) Pruski

Asteraceae

H

A

W

AU

Ui

Nt

Or

276

Sporobolus diander (Retz.) P. Beauv.

Poaceae

H

A

W

AS

Ui

In

Fo

277

Stachytarpheta jamaicensis (L.) Vahl

Verbenaceae

S

P

F

TAM

Ui

In

M

278

Stachytarpheta mutabilis (Jacq.) Vahl.

Verbenaceae

S

P

W

SAM

Ui

Ca/Nt

Nk

279

Stylosanthes fruticosa (Retz.) Alston

Fabaceae

H

P

W

TAM

Ui

In

Fo

280

Swietenia mahagoni (L.) Jack.

Meliaceae

T

P

AR

WI

Ui

Nt

M

281

Synadenium grantii Hook. f.

Euphorbiaceae

S

P

W

TAM

Or

In

M

282

Synedrella nodiflora (L.) Gaertn.

Asteraceae

H

A

W

WI

Ui

In

Nk

283

Tabebuia aurea (Silva Manso) Benth. & Hook.f. ex S.Moore

Bignoniaceae

T

P

AR

TAM

Or

Ca/Nt

Or

284

Tabebuia rosea (Bertol.) Bertero ex A.DC.

Bignoniaceae

T

P

AR

TAM

Or

Cl

Or

285

Tagetes erecta L.

Asteraceae

H

P

CF

TAM

Or

Cl

Or

286

Tagetes patula L.

Asteraceae

H

A

W

MX

Or

Ca

Or

287

Talinum portulacifolium (Forssk.) Asch. ex Schweinf.

Portulacaceae

H

A

W

TAM

Ui

Nt/In

V

288

Tamarindus indica L.

Fabaceae

T

P

AR

TAF

Ht

Ca/Nt

Ef

289

Tecoma capensis (Thunb.) Lindl.

Bignoniaceae

S

P

CF

EU

Or

Cl

Or

290

Tecoma gaudichandi DC.

Bignoniaceae

S

P

AR

SAM

Or

Cl

Or

291

Tecoma stans (L.) Juss. ex Kunth

Bignoniaceae

T

P

AR

TAM

Or

Cl

Or

292

Thunbergia alata Bojer ex Sims

Acanthaceae

C

P

AR

TAF

Or

In

Or

293

Tithonia diversifolia (Hemsl.) A.Gray

Asteraceae

S

A

W

MX

Or

In

Or

294

Torenia fournieri Linden ex E. Fourn.

Linderniaceae

H

P

W

AU

Ui

In

Or

295

Tradescantia spathacea Sw.

Commelinaceae

H

A

W

TAM

Ui

Cl

Or

296

Trapa natans L.

Lythraceae

H

P

AQ

EU

Fd

In

Ef

297

Tribulus terrestris L.

Zygophyllaceae

H

P

W

TAM

Ui

In

M

298

Tridax procumbens (L.) L.

Asteraceae

H

P

W

TAM

Ui

In

M

299

Trigonella foenum-graecum L.

Fabaceae

H

A

CF

MR

Fd

Cl

Es

300

Triumfetta rhomboidea Jacq.

Malvaceae

H

A

W

TAM

Ui

In

M

301

Typha angustifolia L.

Typhaceae

H

P

RB

EU

Ui

In

Fo

302

Typha domingensis Pers

Typhaceae

H

P

AQ

SAM

Ui

In

Nk

303

Urena lobata L.

Malvaceae

S

P

AR

TAF

Ui

Ca/Nt

M

304

Urochloa panicoides P. Beauv.

Poaceae

H

A

W

TAF

Ui

In

Fo

305

Vallisneria spiralis L.

Hydrocharitaceae

H

A

AQ

MR

Ui

Nt/In

Nk

306

Vigna trilobata (L.) Verdc.

Fabaceae

C

A

W

TAF

UI

Nt

M

307

Vigna umbellata (Thunb.) Ohwi & H.Ohashi

Fabaceae

C

A

CF

SEA

Ui

Nt/In

Es

308

Vigna unguiculata (L.) Walp.

Fabaceae

H

A

CF

TAM

Fd

Cl

V

309

Vitex negundo L.

Verbenaceae

S

P

W

AS

UI

Ca/Nt

M

310

Waltheria indica L.

Sterculiaceae

H

P

F

TAM

Ui

In

M

311

Xanthium strumarium L.

Asteraceae

H

A

AR

TAM

Ui

In

M

312

Zea mays L.

Poaceae

H

A

CF

SAM

Fd

Cl

Fo, V

Habit: HHerb | SShrub | CClimber | TTree | Longevity: AAnnual | PPerennial | Habitat: WWasteland | CFCultivated fields | RBRiver or pond banks | FForests | ARRoadsides | AQAquatic | PParasite | Nativity: ASTropical Asia | AUAustralia | BRBrazil | EUEurope | MGMadagascar; MRMediterranean region | MXMexico | NAMNorth America | SAMSouth America | SEASouth East Asia (Including Malaysia, Philippines & Indonesia); TAFTropical Africa | TAMTropical America | WIWest Indies | Mode of introduction to India: FdFood | FoFodder | MMedicine | OOrnamental | PlPlantation | HtHorticultural; UiUnintentional | Status: ClCultivated | CaCasual | NtNaturalized | InInvasive | Ca/NtCasual or Naturalized | Nt/InNaturalized or Invasive | Uses: BfBiofuel | BrBeverages | EfEdible fruit | EsEdible seed | FoFodder | MMedicinal | NkNot known | OlOil | OrOrnamental; RRope making | VVegetable | WWood.

 

 

Table 2. Relative contribution of alien species in the top 10 alien species rich families in Hassan district of Karnataka.

 

Family

Alien species

Total species in Hassan district

Alien plants (%)

1

Amaranthaceae

17

20

85

2

Solanaceae

15

18

83.3

3

Asteraceae

36

76

47.3

4

Convolvulaceae

9

19

47.3

5

Malvaceae

12

27

44.4

6

Caesalpinaceae

8

23

34.7

7

Fabaceae

21

97

33.3

8

Euphorbiaceae

14

51

27.4

9

Apocyanaceae

8

24

25

10

Poaceae

16

140

11.4

 

For graphs and images—click here for full PDF.

 

References

 

Aguilera, A.G (2011). The influence of soil community density on plant-soil feedbacks: an important unknown in plant invasion. Ecological Modelling 222: 3214–3420. https://doi.org/10.1016/j.ecolmodel.2011.06.018

Baker, H. (1965). Characteristics and modes of origin of weeds, pp. 147–172. In: Baker, H.G. & G.L. Stebbins (eds.). The Genetics of Colonizing Species. Academic Press, New York.                                                 

Bartz, R. & I. Kowarik (2019). Assessing the environmental impacts of invasive alien plants: a review of assessment approaches. NeoBiota 43: 69–99.      

CBD (2000). Decision V/8. Alien species that threaten ecosystems, habitats or species. UNEP/CBD/COP/5/8. Nairobi, Kenya: Secretariat of the Convention on Biological Diversity.

Dawson, W., D. Moser, M. van Kleunen, H. Kreft, J. Pergl, P. Pyšek, P. Weigelt, M. Winter, B. Lenzner, T.M. Blackburn, E.E. Dyer, P. Cassey, S.L. Scrivens, E.P. Economo, B. Guénard, C. Capinha, H. Seebens, P. García-Díaz,  W. Nentwig, E. García-Berthou, C. Casal, N.E. Mandrak, C. Fuller, P. Meyer & F. Ess (2017). Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology & Evolution 1: 0186. https://doi.org/10.1038/s41559-017-0186

D’antonio, C.A.R.L.A. & L.A. Meyerson (2002). Exotic plant species as problems and solutions in ecological restoration: a synthesis. Restoration Ecology 10(4): 703–713. https://doi.org/10.1046/j.1526-100X.2002.01051.x

Gallien, L. & M. Carboni (2017). The community ecology of invasive species: where are we and what’s next.  Ecography 40: 335–352. https://doi.org/10.1111/ecog.02446

Ganeshaiah, K.N., S. Kathuria & R.U. Shaanker (2002). Floral resources of Karnataka: A geographic perspective. Current Science 83(7–10): 810–813.

Heywood, V.H. (1989). Patterns, extents, and modes of invasions by terrestrial plants, pp. 31–60. In: Drake, J.A., H.A. Mooney, F. di Castri,  R.H. Groves, F.J. Kruger, M. Rejmanek & M. Williamson (eds.). Biological Invasions: A Global Perspective. John Wiley and Sons, New York.

Jaryan, V., S.K. Uniyal, R.C. Gupta & R.D. Singh (2013).  Alien flora of Indian Himalayan state of Himachal Pradesh. Environmental Monitoring and Assessment 185(7): 6129–53. https://doi.org/10.1007/s10661-012-3013-2

Jones, B.A. & S.M. McDermott (2018). Health impacts of invasive species through an altered natural environment: assessing air pollution sinks as a causal pathway. Environmental and Resource Economics 71(1): 23–43.  https://doi.org/10.1007/s10640-017-0135-6

Kambhar, S.V. & K. Kotresha (2011). A study on alien flora of Gadag District, Karnataka, India. Phytotaxa 16: 52–62. https://doi.org/10.11646/phytotaxa.16.1.4

Kannan, R., C.M. Shackleton & R.U. Shankar (2014). Invasive alien species as drivers in socio-ecological systems: local adaptions towards use of Lantana in southern India. Environment Development and Sustainability 16: 649–669. https://doi.org/10.1007/s10668-013-9500-y

Kaur, R., W.L. Gonza´les, L.D. Llambi, P.J. Soriano, R.M. Callaway, M.E. Rout, T.J. Gallaher & Inderjit (2012). Community impacts of Prosopis juliflora Invasion: biogeographic and congeneric comparisons. PLoS ONE 7(9): e44966. https://doi.org/10.1371/journal.pone.0044966

Khuroo, A.A., Z.A. Reshi, A.H. Malik, E. Weber, I. Rashid & G.H. Dar (2012). Alien flora of India: taxonomic composition, invasion status and biogeographic affiliations. Biological Invasions 14: 99–113. https://doi.org/10.1007/s10530-011-9981-2

Khuroo, A.A., I. Rashid, R. Zafar, G.H. Dhar & B.A. Wafai (2007). The alien flora of Kashmir Himalaya. Biological Invasions 9: 269–292. https://doi.org/10.1007/s10530-006-9032-6

Kull, C.A., J. Tassin & H. Rangan (2007). Multifunctional, scrubby, and invasive forests? Wattles in the highlands of Madagascar. Mountain Research and Development 27: 224–231. https://doi.org/10.1659/mrd.0864

Lambdon, P.W., P. Pysek, C. Basnou, M. Hejda, M. Arianoutsou, F. Essl, V. Jarosık, J. Pergl, M. Winter, P. Anastasiu, P. Andriopoulos, I. Bazos, G. Brundu, L. Celesti-Grapow, P. Chassot, P. Delipetrou, M. Josefsson, S. Kark, S. Klotz, Y. Kokkoris, I. Kuhn, H. Marchante, I. Perglova, J. Pino, M. Vila, A. Zikos, D. Roy & P. Hulme (2008). Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80: 101–149. http://nora.nerc.ac.uk/id/eprint/6990

Latombe, G., P. Pyšek, J.M. Jeschke, T.M. Blackburn, S. Bacher, C. Capinha, M.J. Costello, M. Fernández, R.D. Gregory, D. Hobern, C. Hui, W. Jetz, S. Kumschick, C. McGrannachan, J. Pergl, H.E. Roy, R. Scalera, Z.E. Squires, J.R.U. Wilson, M. Winter, P. Genovesi & M.A. Mc Geoch (2017). A vision for global monitoring of biological invasions. Biological Conservation 213(Part B): 295–308. 

Levine, J.M. (2000). Species diversity and biological invasions: relating local process to community pattern. Science 288: 852–854. https://doi.org/10.1126/science.288.5467.852

Lowe, S., M. Browne, S. Boudielas & M. De Poorter (2000). 100 of the World’s worst invasive alien species. A selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG) of the World Conservation Union (IUCN), Switzerland.

Mack, R.N. & M. Erneberg (2002). The United States naturalized flora: largely the product of deliberate introductions. Annals of the Missouri Botanical Garden 89: 176–189. https://doi.org/10.2307/3298562

Maheshwari, J.K. (1965). Alligator weed in Indian lakes. Nature 206: 1270.

Matthew, K.M. (1969). Exotic flora of Kodaikanal and Palni hills. Records of the Botanical Survey of India 20: 1–241.

Mandal, G. & S.P. Joshi (2014). Invasion establishment and habitat suitability of Chromolaena odorata (L.) King and Robinson, over time and space in the western Himalayan forests of India. Journal of Asia-Pacific Biodiversity 7(4): 391–400. https://doi.org/10.1016/j.japb.2014.09.002

McNeely, J.A. (2001). An introduction to human dimensions of invasive alien species. Human dimension of the consequences of invasive alien species. ISSG, IUCN.

Muniappan, R. & C.A. Viraktamath (1993). Invasive alien weeds in the Western Ghats. Current Science 64: 555–558.

Murthy, E.N., V.S. Raju & C.S. Reddy (2007). Occurrence of exotic Hyptis suaveolens. Current Science 93(9): 1203.

Nayar, M.P. (1977). Changing patterns of the Indian flora. Bulletin Botany Survey of India 19: 145–154.

Negi, P.S. & P.K. Hajra (2007). Alien flora Doon Valley, North West Himalaya. Current Science 92: 968–978.

Paul, T.K. (2010). The earliest record of Parthenium hysterophorus L. (Asteraceae) in India. Current Science 98 (10): 1272.

Pearson, D., Y. Ortega, O. Eren & J. Hierro (2018). Community assembly theory as a framework for biological invasions. Trends in Ecology & Evolution 33: 313–325. https://doi.org/10.1016/j.tree.2018.03.002

Perrings, C., H. Mooney & M. Williamson (2010). Bioinvasions and Globalization: Ecology, Economics, Management and Policy. Oxford University Press, Oxford, 288 pp.

Petřík, P., J. Sádlo, M. Hejda, K. Štajerová, P. Pyšek, & J. Pergl (2019). Composition patterns of ornamental flora in the Czech Republic. NeoBiota 52: 87–109. https://doi.org/10.3897/neobiota.52.39260

Petruzzella, A., J. Manschot, C. Van Leeuwen, B. Grutters & E. Bakker (2018). Mechanisms of invasion resistance of aquatic plant communities. Frontiers in Plant Science 9: 134. https://doi.org/10.3389/fpls.2018.00134

Prakash, L. & P. Balasubramanian (2018). Invasive alien flora of Sathyamangalam Tiger Reserve in southern Eastern Ghats, India. Indian Forester 144(9): 857–862.

Pergl, J. Sádlo, J. Petřík, P. Danihelka, J. Chrtek, Jr J. Hejda, M. Moravcová, L. Perglová, I. Štajerová, K. & P. Pyšek (2016). Dark side of the fence: Ornamental plants as a source for spontaneous flora of the Czech Republic. Preslia 88: 163–188. http://www.preslia.cz/P162Pergl.pdf

Pysek, P (1998). Is there a taxonomic pattern to plant invasion? Oikos 82: 282–294. https://doi.org/10.2307/3546968

Pysek, P. & D.M. Richardson (2010). Invasive species, environmental change and management, and health. Annual Review of Environment and Resources 35: 25–55. https://doi.org/10.1146/annurev-environ-033009-095548

Pysek, P., D.M. Richardson., M. Rejmanek., G.L. Webster, M. Williamson & J. Kirschner (2004). Alien plants in checklists and flora: towards better communication between taxonomists and ecologists. Taxon 53: 131–143. https://doi.org/10.2307/4135498

Pyšek, P., J. Danihelka, J. Sádlo, J. Chrtek, M. Chytrý, V. Jarošík, Z. Kaplan, F. Krahulec, L. Moravcová, J. Pergl, K. Štajerová & L. Tichý (2012). Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Preslia 84(2): 155–255.

Pyšek, P. & M. Chytrý (2014). Habitat invasion research: Where vegetation science and invasion ecology meet. Journal of Vegetation Science 25: 1181–1187. https://doi.org/10.1111/jvs.12146

Pyšek P., J. Pergl, F. Essl, B. Lenzner, W. Dawson, H. Kreft, P. Weigelt, M. Winter, J. Kartesz, M. Nishino, L.A. Antonova, J.F. Barcelona, F.J. Cabezas, D. Cárdenas, J. Cárdenas-Toro, N. Castańo, E. Chacón, C. Chatelain, S. Dullinger, A.L. Ebel, E. Figueiredo, N. Fuentes,P.  Genovesi, Q.J. Groom, L. Henderson, Inderjit, A. Kupriyanov, S. Masciadri, N. Maurel, J. Meerman, O. Morozova, D. Moser, D. Nickrent, P.M. Nowak, S. Pagad, A. Patzelt, P.B. Pelser, H. Seebens, W. Shu, J. Thomas, M. Velayos, E. Weber, J.J. Wieringa, M.P. Baptiste & M. van Kleunen (2017). Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89(3): 203–274. https://doi.org/10.23855/preslia.2017.203

Raghubanshi, A.S., L.C. Rai, J.P. Gaur & J.S. Singh (2005). Invasive alien species and biodiversity in India. Current Science 88(4): 539–540.

Rai, P.K. & J.S. Singh (2020). Invasive alien plant species: Their impact on environment, ecosystem services and human health. Ecological Indicators 111: 106020. https://doi.org/10.1016/j.ecolind.2019.106020

Rao, R.R. (1994). Biodiversity in India: Floristic Aspects. Bishen Singh Mahendra Pal Singh, Dehra Dun.

Rao, R.R. (2012). Floristic diversity in Western Ghats: documentation, conservation and bioprospection- a priority agenda for action. Sahyadri e-news 38: 2–38. 

Reddy, C.S. (2008). Catalogue of invasive alien flora of India. Life Science Journal 5(2): 84–89.

Reddy, C.S., G. Bagyanarayana, K.N. Reddy & V.S. Raju (2008). Invasive Alien Flora of India. National Biological Information Infrastructure, USGS, USA.

Richardson, D.M., P. Pysek, M. Rejmánek, M.G. Barbour, F.D. Panetta & C.J. West (2000). Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions 6: 93. https://doi.org/10.1046/j.1472-4642.2000.00083.x

Saldanha, C.J. & D.H. Nicolson (1976). Flora of Hassan District Karnataka, India. Amerind Publishing Co. Pvt. Ltd, New Delhi, 875 pp.

Saldanha, C.J. (1984). Flora of Karnataka. Vol 1. Oxford and IBH Publishing Co, New Delhi, 535pp.

Saldanha, C.J. (1996). Flora of Karnataka. Vol. 2. Oxford & IBH Publishing. Co. Pvt. Ltd. New Delhi.

Sharma, B.D. & D.S. Pandy (1984). Exotic flora of Allahabad district, Botanical Survey of India, Howrah.

Sharma, G.P., A.S. Raghubanshi. & J.S. Singh (2005). Lantana invasion: an overview. Weed Biology and Management 5(4): 157–165.

Shiddamallayya, N., V.R. Rao, T.R. Shantha, M.N. Shubhasree, H.D. Shashidhar, G. Venkateswarlu & B.N. Sridhar (2010). Invasive alien flora of Karnataka in Indian system of medicine (Ayurveda). Journal of Economic and Taxonomic Botany 34(3): 564–579.

Simberloff, D., J.L. Martin, P. Genovesi, V. Maris, D.A. Wardle, J. Aronson, F. Courchamp, B. Galil, E. Garcia-Berthou, M. Pascal, P. Pyšek, R. Sousa, E. Tabacchi & M. Vilŕ (2013). Impacts of biological invasions: what’s what and the way forward. Trends in Ecology and Evolution 28: 58–66. https://doi.org/10.1016/j.tree.2012.07.013

Singh, J.S., S.P. Singh & S.R. Gupta (2006). Ecology Environment and Resource Conservation. Anamaya Publishers, New Delhi.

Singh, K.P., A.N. Shukla & J.S. Singh (2010). State-level inventory of invasive alien plants, their source regions and use potential. Current Science 99(1): 107–114.

Suthari, S., R. Kandagatla, S. Geetha,  A. Ragan. & V. S Raju (2016). Intrusion of devil weed Chromolaena odorata, an exotic invasive, into Kinnerasani and Eturnagaram wildlife sanctuaries, Telangana, India. Journal of Threatened Taxa 8(2): 8538–8540. https://doi.org/10.11609/jott.2134.8.2.8538-8540

van Kleunen, M., W. Dawson, F. Essl, J. Pergl, M. Winter, E. Weber, H. Kreft, P. Weigelt, J. Kartesz, M. Nishino, L.A. Antonova, F.J. Barcelona, F.J. Cabezas, D. Cárdenas, J. Cárdenas-Toro, N. Castańo, E. Chacón, C. Chatelain, S. Dullinger, A.L. Ebel, E. Figueiredo, N. Fuentes,P.  Genovesi, Q.J. Groom, L. Henderson, Inderjit, A. Kupriyanov, S. Masciadri, N. Maurel, J. Meerman, O. Morozova, D. Moser, D. Nickrent, P.M. Nowak, S. Pagad, A. Patzelt, P.B. Pelser, H. Seebens, W. Shu, J. Thomas, M. Velayos, E. Weber, J.J. Wieringa, M.P. Baptiste & P. Pyšek (2015). Global exchange and accumulation of non-native plants. Nature 525: 100–103. https://doi.org/10.1038/nature14910

Villamagna, A.M. & B.R. Murphy (2010). Ecological and socio-economic impacts of invasive water hyacinth (Eichhornia crassipes): a review. Freshwater Biology 55(2): 282–298. https://doi.org/10.1111/j.1365-2427.2009.02294.x.

Vitousek, P.M., H.A. Mooney, J. Lubchenco & J.M. Melillo (1997). Introduced species: A significant component of human-caused global change. New Zealand Journal of Ecology 21: 1–16.

Wu, S.H., H.T. Sun, Y.C. Teng, M., Rejmanek, S.M., Chaw, T.Y.A. Yang & C.F. Hsieh (2010). Patterns of plant invasions in China: taxonomic, biogeographic, climatic approaches and anthropogenic effects. Biological Invasions 12: 2179–2206. https://doi.org/10.1007/s10530-009-9620-3

Weber, E., S. Shi-Guo & B. Li (2008). Invasive alien plants in China: diversity and ecological insights. Biological Invasions 10: 1411–1429. https://doi.org/10.1007/s10530-008-9216-3