

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

Journal of Threatened Taxa

Building evidence for conservation globally

www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

COMMUNICATION

WOODY SPECIES DIVERSITY FROM PROPOSED ECOLOGICALLY SENSITIVE AREA OF NORTHERN WESTERN GHATS: IMPLICATIONS FOR BIODIVERSITY MANAGEMENT

M. Tadwalkar, A. Joglekar, M. Mhaskar & A. Patwardhan

26 June 2020 | Vol. 12 | No. 9 | Pages: 16048–16063 DOI: 10.11609/jott.5524.12.9.16048-16063

For Focus, Scope, Aims, Policies, and Guidelines visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints, contact <ravi@threatenedtaxa.org>

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Publisher & Host

Member

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 June 2020 | 12(9): 16048–16063

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

DOI: https://doi.org/10.11609/jott.5524.12.9.16048-16063

#5524 | Received 05 November 2019 | Final received 14 June 2020 | Finally accepted 16 June 2020

PLATINUM

() ()

Woody species diversity from proposed ecologically sensitive area of northern Western Ghats: implications for biodiversity management

M. Tadwalkar ¹, A. Joglekar ², M. Mhaskar ³ & A. Patwardhan ⁴

^{1,2,4} Annasaheb Kulkarni Department of Biodiversity, M.E.S. Abasaheb Garware College, Karve Road, Pune, Maharashtra 411004, India. ^{1,2,3,4} Research and Action in Natural Wealth Administration (RANWA), 16 Swastishree Society, Ganeshnagar, Kothrud, Pune,

Maharashtra 411052, India.

¹himedhavi@gmail.com, ²amrutamjoglekar@gmail.com, ³monali.mhaskar@gmail.com, ⁴ ankurpatwardhan@gmail.com (corresponding author)

Abstract: The Western Ghats of India support an array of tropical forests ranging from wet evergreen to scrub formations. Several endemic and threatened plant species are located in areas other than protected areas (PAs). There is an urgent need to understand species diversity in areas other than PAs, for effective management of tropical forests. In this context, reserve forests and informal PAs of Amboli from northern Western Ghats have been investigated. Woody species composition, diversity, and stand structure were assessed by laying quadrats and transects (n=46, area=2.575ha) in closed and open canopy forest patches covering habitat heterogeneity and environmental gradient of the area. A total of 2,224 individuals (of 87 species, 68 genera, and 35 families) was enumerated. Memecylon umbellatum, Syzygium cumini, and Diospyros nigrescens were found to be the most dominant species as per importance value index. Melastomataceae was the most dominant family as per family importance value, whereas Euphorbiaceae and Rutaceae were the most speciose. Fourteen IUCN Red List assessed species and 18 species endemic to the Western Ghats were encountered. Endemic species accounted for nearly 20% of the total number of individuals sampled. Demographic profile exhibited reverse 'J' pattern. Average basal area was 27.02m² per hectare. Woody species diversity of Amboli forests was found comparable with other PAs from northern Western Ghats. Amboli and the adjoining area have been proposed as ecologically sensitive and in the wake of anthropogenic and developmental pressures they experience, it calls for urgent conservation attention.

Keywords: Endemicity, protected area comparison, species composition, stand structure

Abbreviations: BMC—Biodiversity Management Committee | DPL—Dry period length | E—Evergreen | ESA—Ecologically sensitive area | FIV—Family importance value | GBH—Girth at breast height | GPS—Global positioning system | IUCN—International Union for Conservation of Nature | IVI-Importance value index | MSL-Mean sea level | NP-National park | NWG-Northern Western Ghats | PA-Protected area | RF-Reserve forest | SWG-Southern Western Ghats | VU-Vulnerable | WG-Western Ghats | WS-Wildlife sanctuary.

Editor: Aparna Watve, Biome Conservation Foundation, Pune, India.

Date of publication: 26 June 2020 (online & print)

Citation: Tadwalkar, M., A. Joglekar, M. Mhaskar & A. Patwardhan (2020). Woody species diversity from proposed ecologically sensitive area of northern Western Ghats: implications for biodiversity management. Journal of Threatened Taxa 12(9): 16048-16063. https://doi.org/10.11609/jott.5524.12.9.16048-16063

Copyright: © Tadwalkar et al. 2020. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Study pertaining to informal protected areas has been supported by 'Ministry of Environment, Forest and Climate Change (MoEF&CC, GoI)', under AICRP SGESA Programme. Rest of the study is self supported.

Competing interests: The authors declare no competing interests.

For Author details & Author contribution see end of this article.

Acknowledgements: We thank the following: Ministry of Environment, Forest & Climate Change, Government of India, New Delhi, for financial support; Mr. Subhash Puranik and other forest officials of Amboli forest division for their cooperation and guidance throughout the study; Dr. Aparna Watve for her regular research inputs; Mr. Amit Bansude, Mr. Ganesh Kale, Mr. Vishal Magadum, and all colleagues for help during data collection; local experts, Amboli Biodiversity Management Committee and Malabar Nature Conservation Club for their support and help.

INTRODUCTION

Woody species form an important component of the forest landscape both because of their diversity and biomass. They play a vital role in shaping overall structural dynamics of the forest stands and offer various kinds of 'ecosystem services'. Of the 36 global hotspots of biodiversity, Western Ghats, extending along the western coast of India, along with Sri Lanka comprise the Western Ghats-Sri Lanka hotspot (Conservation International 2019; Myers et al. 2000). Western Ghats of India occupy the fifth position in the world in terms of economic potential of their biological resources (Ganeshaiah & Shaanker 2007). It is globally, an area of high endemism with 1,500 endemic species of which 352 are woody plant species and also houses over 4,000 medicinal plants species. WGs support an array of tropical forest types ranging from wet evergreen to scrub formations covering an area of about 1,64,284km² (Kasturirangan et al. 2013). Although nearly 10 percent of the Western Ghats hotspot is under formal protection, it has been pointed out that PAs in this region have historically been established on an ad-hoc basis with little attention to diversity distribution (Bhagwat et al. 2005). There is indeed a growing recognition that PAs cannot be conceived and managed as "islands" isolated from other PAs and from the rest of the landscape context (Laurance et al. 2012). Hence, there is a need to recognize high potential of informal protected areas such as sacred groves for effective conservation management (Bhagwat & Rutte 2006) that can supplement the PA diversity. The conservation management in the region needs to address the following questions: (1) do existing PAs adequately represent the biodiversity? (2) do excluded forest patches sustain more species than PAs? and (3) how many PAs are required to cover the entire gamut of biodiversity? Considering the high endemism, it is necessary and urgent to evaluate conservation potential andecosystem services of the buffer areas surrounding the PAs or other areas not included in formal PA network.

CEPF (2007) report showed that NWG have presence of more fragmented forests patches than the southern Western Ghats (SWG) and are under the pressures of selective logging, excessive grazing, fire, and road construction. Though sporadic records of quantitative inventorization of forest stands from PAs of NWG area available (Kanade et al. 2008; Joglekar et al. 2015), lack of focused studies on diversity that exists outside PAs in fragmented forests is a major challenge in understanding changes in forest community under anthropogenic impacts. Understanding the spatial distribution of these forests, their conservation significance and knowledge of vegetation types thus, becomes essential for outlining effective management strategies.

The forests of Amboli area act as a transition zone between NWG and SWG. CEPF (2007) report identified Amboli region as an irreplaceable site for certain globally threatened species that lack formal protection. Four new faunal species were described from Amboli region in a span of less than five years (Satose et al. 2018). The forests of Amboli experience high developmental pressures owing to growing tourism enterprises, necessitating conservation planning, for which exploration of the region's diversity is necessary. In this paper, we have characterized the woody species diversity, composition and stand structure of Amboli forests from relatively less explored area of NWG.

MATERIAL AND METHODS

Study area

NWGs in Maharashtra range from 15.5°-20.5°N & 73°-74°E. Popularly known as Sahyadri, the forests in this region are highly seasonal (annual rainfall range: 50-7000 mm, dry period length (DPL): 8-9 months, temperature: 10–40 °C). Amboli (MSL=700m) is located in Sawantwadi Taluka of Sindhudurg District of Maharashtra (Figure 1) in NWG. Although the area lies outside the formal PA network, it includes private forests, reserved forests and community owned forests spread across 659.88ha (Bharmal et al. 2011). Fragmented forests of Amboli form a mosaic of different vegetation and habitat types. Primary vegetation type is evergreen (closed canopy: >60% and height 15-20m), with stunted vegetation around lateritic outcrops (open canopy: 20-40%, height 5-8m) (Image 1). These together harbor endemic and threatened plant species and unique ephemeral flush vegetation that characterize lateritic plateaus. The area is proposed as ecologically sensitive (Maharashtra Government Resolution) and also forms a part of geographically and ecologically important Sahyadri-Konkan Ecological corridor (CEPF 2007).

It is the type locality of species like a Caecilian *Gegeneophis danieli* (Giri et al. 2003), Amboli Tiger Toad *Xanthophryne tigerina* (Biju et al. 2009), leaping frog *Indirana chiravasi* (Padhye et al. 2014) and water snake *Rhabdops aquaticus* (Giri et al. 2017). Biologists who studied the diversity of avifauna and Lepidoptera (Bharmal et al. 2011; Satose et al. 2018) concluded that the area is rich in biological diversity. Though the area has been explored in details for faunal diversity,

Tadwalkar et al.

Figure 1. Study area. Source: QGIS Development Team (2019)

comprehensive taxonomic floristic studies are rare (Kulkarni 1988; Almeida 1990). There is dearth of quantitative ecological studies.

Amboli is a famous destination for tourists and naturalists alike due to picturesque landscapes, waterfalls and faunal sightings. But owing to the unplanned and unregulated tourism, the area witnesses encroachment into the forested landscapes, logging, and poorly planned construction.

Sampling design

Standard methods of woody vegetation analysis were

followed (Ganesh et al. 1996; Sutherland 2006). Species composition and diversity were assessed by laying quadrats (n=40, size 20 x 20 m) and transects (n=6) in closed and open canopy forest patches covering habitat heterogeneity. It was ensured that the sampling plots cover significant environmental gradient of the area. Transect length varied from 500 x 5 m or 250 x 5 m or 200 X 5m depending on the patch size. Each quadrat and transect was marked by GPS. The total area sampled was 2.575ha and intensity of sampling amounts to 0.39% of sampling, which is more than a standard requirement of 0.01% for such enumerations (Shivraj et al. 2000).

Image 1. Habitat and disturbance in the study area: A—Evergreen forests | B—Lateritic plateaus | C—Open scrub along forest edge | D—Sacred grove | E—Expanding habitation in natural areas | F—Construction debris and littering | G—Tree cutting | H—Roadkill - snake. © Ankur Patwardhan, Medhavi Tadwalkar & Amruta Joglekar.

Vegetation composition, stand structure and diversity assessment

All woody species were enumerated for individual height and girth (\geq 15cm at 1.3m height above ground) measurements. Species level identification was done using regional flora (Almeida 1990; Singh et al. 2001). Endemicity and IUCN Red List status of the species were assignedby referring to standard literature (Pascal 1988; BIOTIK 2008; Singh et al. 2015; https://www.iucnredlist. org/). Data collected from quadrat and transect sampling were used to understand woody species composition and diversity. For stand structure and basal area estimates data from quadrats was used. Importance value index (IVI) and family importance value (FIV) were calculated as per Ganesh et al. (1996). For the diversity estimates, data from quadrats and transects was pooled. Diversity was estimated using Shannon's index (H') as per Magurran (2004). Compositional similarity between sampled plots was assessed by Bray Curtis similarity index calculated using PAST (version 3). Correlation analysis was performed using the R software (version 3.5.1).

RESULTS

(A) Woody species composition and diversity

A total of 2,224 individuals were sampled during the study representing 87 species spanning across 68 genera and 35 families. Genus *Diospyros* was found to be the most diverse genus with four species followed by *Ixora* and *Ficus* (represented by three species each). Fifty-six genera (82%) were represented by only one species in the sampled area. Figure 2 represents 10 most abundant genera in the sampled area with corresponding abundance.

Out of 87 species that were encountered during the study, Memecylon umbellatum was found to be the most abundant species in the area (N=501, 22.53%) followed by Mallotus phillipensis, Syzygium cumini, Diospyros candolleana, Symplocos racemosa, and Diospyros nigrescens. These six species together contributed to 56.11% of the total abundance. A long tail of singleton species was seen where, singleton species and doubleton species contributed to 24.1% (n=21) and 12.6% (n=11), respectively, to the stand structure. Persea macrantha, Homalium ceylanicum, and Mitragyna praviflora were among a few species represented by only one individual and Euonymus indicus, Lagerstroemia microcarpa, and Litsea deccanensis were represented by two individuals. Table 1 depicts various phyto-sociological attributes from the sampled plotsin the study area. The abundance in the sampled plots varied greatly from one individual (OLR2, OMD2) to 384 individuals (CCR3); whereas number of species ranged from 1 (OLR2, OMD2) to 32 (CCR3). Maximum number of woody endemic species (9) was reported from Malai Pathar (CMP4), whereas Mahadevgad road (CMD1) showed highest number of endemic individuals (59). Presence of WG endemic species, Diospyros candolleana was a notable feature in this area. Shannon index varied from 0 to 2.86 within sampled plots, '0' being recorded for two open forest plots which were represented by single individual. In order to get insights into the contribution of singleton and doubleton species in overall woody species diversity of the area, Shannon index value was plotted against the proportion of singleton and doubleton species in the sampled plots, depicted in Figure 3 (r=0.798, p<0.001).

Figure 2. Ten most abundant genera with number of species.

Table 1. Diversity parameters in the sampled plots.

				Stem density per sampling	Endemic	IUCN assessed	
Area	Plot code	No. of species	No. of families	unit	species*	species	Shannon index
	CCR1	16	13	68	2 (5)	3 (7)	1.97
	OCR1	5	5	8	1 (3)	0	1.39
Choukul Road	CCR4#	17	13	76	4 (23)	4 (15)	2.19
	CCR5	9	9	60	3 (29)	0	1.54
	CCR2	18	14	79	4 (10)	3 (9)	2.39
	CCR3##	32	22	384	6 (35)	3 (32)	2.59
	CHR1	9	7	28	3 (5)	2 (3)	1.53
Hiranyakeshi	OHR2	4	4	5	1 (1)	0	1.33
, manyancom	CHR3	19	14	50	2 (7)	0	2.14
	OHR4	5	5	8	1 (6)	0	1.49
	CLR1	11	9	35	2 (8)	4 (12)	2.04
	OLR2	1	1	1	0	1 (1)	0
	OLR3	11	8	33	7 (16)	5 (15)	2.18
	CLR2	16	11	30	5 (7)	5 (13)	2.54
	CLR3	13	10	42	4 (9)	6 (20)	2.32
Lingachi Rai	CLR4	13	9	28	5 (11)	4 (14)	2.33
	CLR5	5	4	16	1 (1)	2 (7)	1.13
	CLR6	12	10	28	3 (10)	4 (9)	2.29
	CLR7	13	10	31	5 (11)	4 (14)	2.36
	CLR8	9	7	33	2 (5)	4 (16)	1.87
	OLR1	4	3	5	0	0	1.33
	CMD1	16	11	67	5 (59)	2 (11)	2.41
Mahadevgad	OMD1	5	5	16	0	0	1.23
Noau	CMD2	11	9	35	2 (10)	2 (2)	1.67
	CMP1#	19	15	119	4 (29)	2 (21)	2.44
	CMP2	12	9	39	3 (6)	2 (6)	2.21
Malai Pathar	CMP3	15	13	43	6 (8)	2 (2)	2.33
	CMP4##	29	19	209	9 (45)	3 (47)	2.86
	CCR6###	27	17	124	7 (14)	2 (2)	2.71
	CMC1	12	11	39	3 (5)	1 (2)	2.01
	CMC2	12	10	43	2 (10)	2 (11)	1.98
МРСА	CMC3	16	13	47	7 (17)	3 (4)	2.33
	CMC4	6	5	43	3 (13)	1 (5)	1.21
	CMC5#	17	15	99	4 (15)	2 (10)	2.3
	OMD2	1	1	1	1 (1)	0	0
Narayangad	OMD3	4	4	9	2 (5)	0	1.22
	CSR1	12	10	24	4 (17)	2 (11)	2.31
	OSR5	8	8	14	3 (6)	0	1.95
	CSR2	15	12	26	3 (9)	3 (10)	2.56
	CSR3	18	13	52	5 (21)	2 (15)	2.49
	CSR4	12	9	29	6 (27)	3 (9)	2.29
Sadachi Rai	CSR5	14	10	34	6 (9)	2 (13)	2.30
	OSR1	7	6	17	3 (15)	0	1.79
	OSR2	6	6	11	1 (7)	0	1.59
	OSR3	5	5	15	1 (7)	0	1.23
	OSR4	7	7	21	2 (10)	0	1.61

*Values in the parentheses depict the number of individuals encountered All sampling units are primarily quadrats (20 x 20m, n=40) except # Transects: 250 x 5m (n=3); ##Transects: 500 x 5m (n=2) & ###Transects: 200 x 5m (n=1)

16053

Table 2. Species encountered in the sampled plots and their attributes.

	Species	Family	Number of Individuals	Dispersal Mode [#]	E/D Habit ^{\$}	Forest strata*	Endemicity	IUCN Red List category ^{##}
1	Aglaia lawii	Meliaceae	54	Z	E	С		LC
2	Aglaia sp.	Meliaceae	17	Z	E	С		
3	Allophylus cobbe	Sapindaceae	2	Z	E	Liana		
4	Alstonia scholaris	Apocynaceae	1	An	E	С		LC
5	Ardisia solanacea	Myrsinaceae	3	Z	E	U		
6	Artocarpus hirsutus	Moraceae	2	Z	E	С		LC
7	Atalantia racemosa	Rutaceae	28	Z	E	М		
8	Beilschmiedia dalzellii	Lauraceae	23	Z	E	С	WG	
9	Blachia denudata	Euphorbiaceae	10	At	E	U	WG	
10	Bridelia retusa	Euphorbiaceae	3	Z	D	М		
11	Callicarpa tomentosa	Verbenaceae	3	Z	E	U		
12	Canthium anguistifolium	Rubiaceae	1	Z	E	Liana		
13	Canthium dicoccum	Rubiaceae	1	Z	E	М		VU
14	Canthium rheedei	Rubiaceae	1	Z	E	U		
15	Carallia brachiata	Rhizophoraceae	3	Z	E	С		
16	Careya arborea	Lecythidaceae	6	Z	D	М		
17	Carissa congesta	Apocynaceae	1	Z	E	U		
18	Carissa inermis	Apocynaceae	9	Z	E	Liana		
19	Caryota urens	Arecaceae	10	Z	E	С		LC
20	Casearia graveolens	Flacourtiaceae	1	Z	E	U		
21	Casearia sp.	Flacourtiaceae	5	Z	E	U		
22	Catunaregam spinosa	Rubiaceae	28	Z	D	С		
23	Celtis timorensis	Ulmaceae	3	Z	E	С		
24	Cinnamomum verum	Lauraceae	6	Z	E	С		
25	Clausena anisata	Rutaceae	2	Z	E	С		
26	Clausena indica	Rutaceae	9	Z	E	U		
27	Combretum extensum	Combretaceae	1	An	D	Liana		
28	Combretum ovalifolium	Combretaceae	1	An	D	Liana		
29	Connarus wightii	Connaraceae	1	At	E	Liana		
30	Dichapetalum gelonioides	Dichapetalaceae	10	Z	E	U		
31	Dimocarpus longan	Sapindaceae	71	Z	E	С		NT
32	Dimorphocalyx lawianus	Euphorbiaceae	18	At	E	U	WG	
33	Diospyros candolleana	Ebenaceae	115	Z	E	с	WG	VU
34	Diospyros montana	Ebenaceae	16	Z	D	С		
35	Diospyros nigrescens	Ebenaceae	112	Z	E	М	WG	
36	Diospyros sp.	Ebenaceae	1	Z	E	М		
37	Drypetes venusta	Euphorbiaceae	10	Z	E	М	WG	
38	Dysoxylum binectariferum	Meliaceae	11	Z	E	С		
39	Euonymus indicus	Celastraceae	2	Z	E	С	WG	
40	Ficus exasperata	Moraceae	1	Z	D	U		LC
41	Ficus racemosa	Moraceae	7	Z	D	С		
42	Ficus sp.	Moraceae	1	Z	E	С		
43	Flacourtia indica	Flacourtiaceae	2	Z	D	U		
44	Garcinia indica	Clusiaceae	4	Z	D	М	WG	VU
45	Garcinia talbotii	Clusiaceae	20	Z	E	М	WG	

Tadwalkar et al.

	Species	Family	Number of Individuals	Dispersal Mode [#]	E/D Habit ^s	Forest strata*	Endemicity	IUCN Red List category##
46	Glochidion ellipticum	Euphorbiaceae	17	At	E	С	WG	
47	Glycosmis pentaphylla	Rutaceae	5	Z	E	U		
48	Heterophragma quadriloculare	Bignoniaceae	11	An	D	с		
49	Holigarna grahamii	Anacardiaceae	29	Z	D	С	WG	
50	Homalium ceylanicum	Flacourtiaceae	1	Z	E	С		
51	Hymenodyction obovatum	Rubiaceae	1	Z	D	м		
52	Ixora brachiata	Rubiaceae	37	Z	E	м	WG	
53	lxora nigricans	Rubiaceae	4	Z	E	U		
54	<i>lxora</i> sp.	Rubiaceae	13	Z	E	U		
55	Knema attenuata	Myristicaceae	1	Z	E	С	WG	LC
56	Lagerstroemia microcarpa	Lythraceae	2	An	D	с	WG	
57	Leeaindica	Leeaceae	29	Z	E	U		
58	Lepisanthes tetraphylla	Sapindaceae	18	At	E	м		
59	Ligustrum perrottetii	Oleaceae	18	Z	D	м	WG	
60	Litsea deccanensis	Lauraceae	2	Z	E	U		
61	Litsea stocksii	Lauraceae	4	Z	E	м	WG	
62	Mallotus philippensis	Euphorbiaceae	221	Z	E	С		
63	Mangifera indica	Anacardiaceae	24	Z	E	С		DD
64	Meiogyne pannosa	Annonaceae	3	Z	E	U	WG	
65	Memecylon umbellatum	Melastomataceae	501	Z	E	С		
66	Memecylon wightii	Melastomataceae	1	Z	E	U		
67	Mimusops elengi	Sapotaceae	9	Z	E	С		LC
68	Mitragyna parviflora	Rubiaceae	1	At	D	С		
69	Moullava spicata	Caesalpineaceae	2	At	E	Liana		
70	Murraya koenigii	Rutaceae	2	Z	E	U		
71	Murraya paniculata	Rutaceae	1	Z	E	U		
72	Myristica dactyloides	Myristicaceae	31	Z	E	U		VU
73	Neolitsea cassia	Lauraceae	1	Z	E	U		
74	Nothapodytes nimmoniana	Icacinaceae	64	Z	D	м		
75	Nothopegia castaneifolia	Anacardiaceae	84	Z	E	м		
76	Olea dioica	Oleaceae	31	Z	E	С		
77	Oxyceros rugulosus	Rubiaceae	1	Z	E	Liana		
78	Persea macrantha	Lauraceae	1	Z	E	С	1	
79	Salacia chinensis	Celastraceae	2	Z	E	U		
80	Scutia myrtina	Rhamnaceae	12	Z	E	Liana		
81	Symplocos racemosa	Symplocaceae	114	Z	E	С		
82	Syzygium cumini	Myrtaceae	185	Z	E	С		
83	Syzygium hemisphericum	Myrtaceae	35	Z	E	С		
84	Tabernaemontana alternifolia	Apocynaceae	14	Z	D	U	WG	NT
85	Terminalia chebula	Combretaceae	8	Z	D	С		
86	Xantolisto mentosa	Sapotaceae	46	Z	E	С		
87	Ziziphus rugosa	Rhamnaceae	2	Z	E	U		

[#] Dispersal mode category: Z—Zoochory | At—Autochory | An—Anemochory |⁵ E/D habit: E—Evergreen | D—Deciduous | *Forest Strata: C—Canopy species | M— Middle Storey Species | U—Under storey |^{##} IUCN category: DD—Data Deficient | NT—Near Threatened | LC—Least Concern | VU—Vulnerable.

Table 3. Importance Value Index of the species from the study area.

			Relative		Relative	Basal area	Relative	
	Species	Frequency	frequency	Density	density	(m²)	dominance	IVI
1	Memecylon umbellatum	32	7.862	334	27.512	447.083	26.221	61.596
2	Syzygium cumini	22	5.405	75	6.178	264.011	15.484	27.067
3	Diospyros nigrescens	23	5.651	72	5.931	31.495	1.847	13.429
4	Aglaia lawii	16	3.931	54	4.448	85.247	5.000	13.379
5	Dimocarpus longan	14	3.440	45	3.707	81.107	4.757	11.903
6	Holigarna grahamii	12	2.948	26	2.142	101.144	5.932	11.022
7	Diospyros candolleana	18	4.423	48	3.954	38.110	2.235	10.612
8	Mangifera indica	9	2.211	24	1.977	107.012	6.276	10.464
9	Nothopegia castaneifolia	21	5.160	47	3.871	13.787	0.809	9.840
10	Mallotus philippensis	10	2.457	42	3.460	28.339	1.662	7.579
11	Beilschmiedia dalzellii	9	2.211	22	1.812	57.208	3.355	7.379
12	Ixora brachiata	13	3.194	34	2.801	14.830	0.870	6.865
13	Symplocos racemosa	9	2.211	35	2.883	22.388	1.313	6.407
14	Catunaregam spinosa	11	2.703	23	1.895	29.089	1.706	6.303
15	Syzygium hemisphericum	7	1.720	13	1.071	42.462	2.490	5.281
16	Garcinia talbotii	9	2.211	19	1.565	22.757	1.335	5.111
17	Xantolisto mentosa	9	2.211	20	1.647	18.739	1.099	4.958
18	Atalantia racemosa	11	2.703	17	1.400	5.826	0.342	4.445
19	Nothapodytes nimmoniana	6	1.474	28	2.306	11.032	0.647	4.428
20	Caryota urens	7	1.720	10	0.824	20.474	1.201	3.744
21	Ligustrum perrottetii	6	1.474	18	1.483	7.783	0.456	3.413
22	Terminalia chebula	7	1.720	8	0.659	16.206	0.950	3.329
23	Ficus sp.	1	0.246	1	0.082	47.130	2.764	3.092
24	Glochidion ellipticum	7	1.720	10	0.824	7.979	0.468	3.012
25	Heterophragma quadriloculare	7	1.720	11	0.906	6.233	0.366	2.992
26	Dysoxylum binectariferum	6	1.474	8	0.659	14.603	0.856	2.990
27	Olea dioica	6	1.474	9	0.741	7.341	0.431	2.646
28	Drypetes venusta	4	0.983	10	0.824	14.087	0.826	2.633
29	Diospyros montana	4	0.983	8	0.659	14.816	0.869	2.511
30	Mimusops elengi	5	1.229	9	0.741	7.271	0.426	2.396
31	Ficus racemosa	5	1.229	5	0.412	12.846	0.753	2.394
32	Myristica dactyloides	2	0.491	6	0.494	22.084	1.295	2.281
33	Tabernaemontana alternifolia	5	1.229	9	0.741	3.461	0.203	2.173
34	Careya arborea	5	1.229	6	0.494	5.774	0.339	2.061
35	Lepisanthes tetraphylla	5	1.229	6	0.494	2.792	0.164	1.886
36	Scutia myrtina	4	0.983	9	0.741	2.222	0.130	1.854
37	Carissa inermis	4	0.983	8	0.659	1.414	0.083	1.725
38	Dimorphocalyx lawianus	2	0.491	5	0.412	8.572	0.503	1.406
39	Blachia denudata	2	0.491	8	0.659	2.318	0.136	1.286
40	Cinnamomum verum	2	0.491	3	0.247	8.343	0.489	1.228
41	Clausena indica	1	0.246	9	0.741	2.175	0.128	1.115
42	Carallia brachiata	3	0.737	3	0.247	1.481	0.087	1.071
43	Persea macrantha	1	0.246	1	0.082	12.560	0.737	1.065

	Species	Frequency	Relative frequency	Density	Relative density	Basal area (m²)	Relative dominance	IVI
44	Dichapetalum gelonioides	3	0.737	3	0.247	0.358	0.021	1.005
45	Callicarpa tomentosa	2	0.491	2	0.165	5.160	0.303	0.959
46	Clausena anisata	2	0.491	2	0.165	2.835	0.166	0.822
47	Meiogyne pannosa	2	0.491	3	0.247	1.005	0.059	0.797
48	Bridelia retusa	2	0.491	2	0.165	1.130	0.066	0.722
49	Euonymus indicus	2	0.491	2	0.165	0.674	0.040	0.696
50	Neolitsea cassia	1	0.246	1	0.082	6.243	0.366	0.694
51	Leea indica	1	0.246	5	0.412	0.574	0.034	0.691
52	Ardisia solanacea	2	0.491	2	0.165	0.184	0.011	0.667
53	Glycosmis pentaphylla	2	0.491	2	0.165	0.181	0.011	0.667
54	Salacia chinensis	2	0.491	2	0.165	0.167	0.010	0.666
55	Artocarpus hirsutus	1	0.246	2	0.165	2.033	0.119	0.530
56	Lagerstroemia microcarpa	1	0.246	1	0.082	3.267	0.192	0.520
57	Celtis timorensis	1	0.246	1	0.082	2.377	0.139	0.467
58	Ziziphus rugosa	1	0.246	2	0.165	0.537	0.031	0.442
59	Moullava spicata	1	0.246	2	0.165	0.411	0.024	0.435
60	Flacourtia indica	1	0.246	2	0.165	0.362	0.021	0.432
61	Allophylus cobbe	1	0.246	2	0.165	0.182	0.011	0.421
62	Murraya koenigii	1	0.246	1	0.082	1.583	0.093	0.421
63	<i>Casearia</i> sp.	1	0.246	2	0.165	0.171	0.010	0.420
64	Alstonia scholaris	1	0.246	1	0.082	1.016	0.060	0.388
65	Garcinia indica	1	0.246	1	0.082	0.723	0.042	0.371
66	Murraya paniculata	1	0.246	1	0.082	0.430	0.025	0.353
67	Knema attenuata	1	0.246	1	0.082	0.407	0.024	0.352
68	Mitragyna parviflora	1	0.246	1	0.082	0.246	0.014	0.343
69	Combretum extensum	1	0.246	1	0.082	0.152	0.009	0.337
70	Diospyros sp.	1	0.246	1	0.082	0.152	0.009	0.337
71	Memecylon wightii	1	0.246	1	0.082	0.152	0.009	0.337
72	Canthium anguistifolium	1	0.246	1	0.082	0.138	0.008	0.336
73	Connarus wightii	1	0.246	1	0.082	0.126	0.007	0.335
74	Carissa congesta	1	0.246	1	0.082	0.091	0.005	0.333
75	Casearia graveolens	1	0.246	1	0.082	0.091	0.005	0.333
76	Combretum ovalifolium	1	0.246	1	0.082	0.091	0.005	0.333
77	Oxyceros rugulosus	1	0.246	1	0.082	0.085	0.005	0.333
78	Litsea deccanensis	1	0.246	1	0.082	0.080	0.005	0.333

The results showed highly significant relation indicating contribution of rare species in the overall diversity of the study area.

Table 2 gives various species attributes of the study area. Fourteen IUCN assessed species together accounted for 15% of the total number of individuals encountered. *Diospyros candolleana*, listed in the Vulnerable (VU) category, was found to be one of the dominant species in the study area. Evergreen (E) is the dominant habit represented by 78% of species which are mainly distributed in closed forest patches. Eighty-six percent of species showed zoochory as a dispersal mode. An attempt has also been made to assign species status (canopy / middle storey / understorey) as per the vegetation strata observed in the study area.

Cluster analysis (Figure 4) revealed that maximum species similarity of the plots was observed to be ca. 74%. Quadrats laid in Lingachi rai sacred grove area (a community owned forest), formed a cluster. This cluster exhibits low similarity with the other quadrats taken in reserve forests, private forests and Sadachi rai (a sacred grove situated in the reserved forests). It is interesting to note here that these quadrats despite being laid in the closed forests exhibit different patterns. Open forest patches showed lowest (2% to 20%) species compositional similarity with closed forest patches.

(B) Importance Value Index (IVI) and Family Importance Value (FIV)

Data collected through quadrat sampling (S=78, N=1213) was used for the estimation of IVI and FIV. Memecylon umbellatum was found to be the most dominant species as per IVI (Table 3). Though represented by only 6% of individuals, Syzygium cumini was found to be second most important species due to its high basal area followed by Diospyros nigrescens, Aglaia lawii, and Dimocarpus longan. Family Melastomataceae represented by the genus Memecylon in the study area, showed the highest FIV (56.38) due to its abundance as well as the basal area. Families Myrtaceae, Anacardiaceae, Ebenaceae, and Euphorbiaceae were found to be the other most important families as per FIV (Figure 5). Euphorbiaceae and Rutaceae were the most speciose families with six species each followed by Lauraceae and Rubiaceae (5 species each).

(C) Stand structure

The girth class distribution showed typical reverse 'J' shaped curve (Figure 6). First three GBH classes, i.e., 15–30cm, 30–45cm, and 45–60 cm contributed to 73% of the individuals (no. of species=70) (Figure

SD species

10

15

Figure 3. Relation of singleton and doubleton species (SD species) with the Shannon diversity index.

5

3.0

2.0

0.1

0.0

0

Shannon Index

7). Less than 1% individuals were represented in GBH class > 210cm. They were comprised by species such as *Holigarna grahamii, Persea macrantha, Syzygium cumini, Mangifera indica*, and *Memecylon umbellatum*. Total basal area recorded was 43.23m². GBH classes (45–120 cm) contributed to highest basal area (40.99%), however, it should be noted that maximum number of individuals was found among lower GBH classes with subsequent GBH classes showing steady decrease in number of individuals (Figure 7). Basal area decreased with increasing GBH which was depicted by very low abundance. Stand basal area of *Memecylon umbellatum* and *Syzygium cumini* was around 41% of the total basal area.

(D) Endemic species diversity and abundance

Of the total number of species recorded, 18 species were Western Ghats endemics and accounted for nearly 20% of the total number of individuals sampled. Genus Diospyros (represented by two endemic species - D. candolleana and D. nigrescens) comprised of 51.8% of the endemic individuals. D. candolleana (VU) was also found to be one of the dominant species in the study area as revealed from IVI. Drypetes venusta, Knema attenuata, and Meiogyne pannosa were encountered only in the sacred groves. Sacred groves also showed presence of H. grahamii (>195cm) and Beilschmiedia dalzellii (>180cm). Such hefty individuals of these species were seldom seen elsewhere highlighting the significance of protection of sacred groves in biodiversity conservation. Endemic species richness also exhibited highly significant relation with Shannon diversity (r=0.766, p<0.001) (Figure 8).

(E) Woody species diversity across various PAs vis-a-vis vegetation at Amboli

Table 4 represents various ecological attributes from

20

Tadwalkar et al

Figure 4. Bray-Curtis similarity plot based on species composition.

Figure 5. Family dominance based on FIV.

study area and compares it with similar such studies conducted elsewhere inside PAs and reserve forests of NWG.

DISCUSSION

Present study provides systematic account of woody species composition of Amboli forests. In comparison with studies from protected areas from NWG, the sampled area showed high species richness and abundance (Table 4). Out of 35 families, Euphorbiaceae and Rutaceae were found to be diverse families of Amboli forest followed by Lauraceae and Rubiaceae. Though highly diverse, Lauraceae and Rubiaceae showed lower FIV values due to its lower density and lower basal area as similar to studies conducted in Kalakad-Mundanthurai forests of SWGs by Ganesh et al. (1996). As per FIV, Melastomataceae was found to be the most dominant family which is very similar to family dominance in Chandoli NP (Kanade et al. 2008) and Koyna WS (Joglekar et al. 2015). Puri et al. (1983) and Pascal (1988) assigned Memecylon-Syzygium-Actinodaphne (M-S-A) floristic series to evergreen forests of NWG based on the criteria of dominance-abundance-fidelity. Current study revealed Memecylon-Syzygium-Diospyros type which is found to be different from Memcylon-Syzygium-Olea type found in protected areas of NWG (Table 4). M. umbellatum, the most dominant species

Study area	Present study Amboli forest	Mulshi forest (Watve et al. 2003)	Chandoli NP (Kanade et al. 2008)	Koyna WS (Joglekar et al. 2015)	Radhanagari WS (Unpublished data)	Fragmented forest of Mulshi Taluka (Kasodekar et al. 2019)
Location	15.95°N & 74°E	18.43°N & 73.42°E	17.12°N & 73.85°E	17.42°N & 73.77°E	16.40°N & 73.98°E	18.53°N & 73.42°E
Annual Rainfall (mm)	7000	6500	6200	5000	5000	6500
Altitude (m)	600–700	500-1000	589–1044	740–1005	579–853	700–1000
Dry period length	7 months	8–9 months	8–9 months	8–9 months	8 months	8–9 months
Forest type	Evergreen	Semi evergreen	Evergreen, semi evergreen	Evergreen, semi evergreen, moist deciduous	Evergreen, semi evergreen, moist deciduous	Semi evergreen forest
Area sampled (ha)	2.575	0.635	5	6	6.5	0.3
Species encountered	87	52	107	108	165 (Includes unidentified species)	49
Girth class measured	≥15cm	≥10cm	≥15cm	≥15cm	≥15cm	>10cm
Total no. of individuals	2224	-	4200	4296	4754	444
Density	1213 individuals/1.6ha	633–1720 individuals/ha	149–657 individuals /0.5ha	84–544 individuals /0.5ha	140–648 individuals /0.5ha	-
No. of endemic species	18	-	13	21	17	4
IUCN assessed species	14	-	-	13	-	-
Basal area	27.02m²/ha	14.5–72.9 m²/ha	10.22–57.16 m²/ha	6.76–58.23 m²/ha	20.33m²/ha	-
Floristic series	Memecylon- Syzygium- Diospyros	Dimocarpus-Aglaia- Ficus nervosa	Memecylon- Syzygium-Olea	Memecylon- Syzygium-Olea	Memecylon- Syzigium-Olea	-
Shannon index	0-2.86	2.1-3.83	2.0-3.2	1.5-3.03	2.52-3.47	2.97-3.26

Table 4. Woody plant species diversity i	Amboli vis-à-vis PAs and RF fro	om northern Western Ghats.
--	---------------------------------	----------------------------

% of Individuals

Figure 6. Number of individuals and corresponding basal area across GBH.

in the study area was represented by >20% of the total number of individuals. Similar trend was found in studies conducted in Chandoli NP and Koyna WS where *M. umbellatum* was represented by 27% and 34%

individuals, respectively. The study area harbored 18 species endemic to the WG that accounted for around 20% of the individuals sampled. It is interesting to note that some endemic species represented in the study

Basal area (sq.m)

% species

Figure 8. Relation between endemic species richness and Shannon diversity.

area are among the most important species according to IVI. These include D. nigrescens (IVI 13.43), Holigarna grahamii (IVI 11.02) and D. candolleana (IVI 10.61). This underlines the importance of the study area in sustaining the population of endemic woody species. High proportion of endemic species was also reported by Kanade et al. (2008) from undisturbed evergreen forest patches of Chandoli NP. Similar findings were reported from Koyna WS which showed presence of 23 endemic species represented by 656 individuals (15.27%). The dominance of typical evergreen forest species such as Holigarna grahamii and Aglaia lawii, both endemic species, suggest an origin from a community differing in composition from the typical M-S-A types (Watve et al. 2003). Amboli forests showed presence of 14 IUCN assessed species (six species being VU or NT) with 15% of total individuals sampled which is comparable to Koyna WS that recorded 13 IUCN assessed species and 9% of total number of individuals (Joglekar et al. 2015).

Since the area under consideration is relatively small, we may expect high similarity among the species in the sampled plots, however, clustering with Bray-Curtis similarity plot reveals that there are unique species conferring unique composition to the plots. Closed forest patches of Lingachi rai form a separate cluster as against other closed reserved forest patches and Sadachi rai. Species like Artocarpus hirsutus, Blachia denudata, Beilschmiedia dalzellii, and Caryota urens were present in Lingachi rai with low/no occurrence in other closed forest patches. Average stand basal area of Amboli forests was 27.02m²/ha which was found to be comparable with other studies conducted in protected areas of NWG (Table4). Present study also showed reverse 'J' pattern of the stand structure with highest number of species and individuals in lowest GBH class (15-30 cm) (Kanade et al. 2008; Joglekar et al. 2015) while higher basal area was found to be between 45–120 cm. Typical evergreen endemic forest species like Aglaia lawii, Beischmedia dalzellii, Holigarna grahamii and ecologically important species like Ficus sp., Dimocarpus longan were present in higher GBH classes (above 180cm) indicating healthy nature of vegetation.

% of Individuals

% Endemic species

CONCLUSION

Studies on the vegetation analysis and biodiversity pattern are of utmost importance especially in the forest areas outside the PA network. Such areas in tropics are actively managed and modified by humans. Unplanned and uncontrolled tourism especially during monsoon, poorly planned construction and logging are some

Tadwalkar et al

of the disturbance drivers affecting floral and faunal diversity of Amboli (Image1). Floristic surveys form the primary step for carrying out ecological restoration of a particular area (Mota et al. 2017) and provide the inputs which feed large scale databases.

In this context, present study forms an important step in establishing the baseline data about woody plant diversity of the region. Closed forest patches with dominance of endemic and rare species emphasized the importance of conservation of Amboli forests in patchily distributed forests of NWG. It also revealed that the woody plant diversity in Amboli forest is comparable to other PAs from NWG. The information thus generated can be used effectively by BMC formed under the provisions of Biological Diversity Act (2002). Conserving this unique landscape rich in flora and fauna involving BMC and other stakeholders such as local community and forest department will reveal new facets of participatory conservation model that can be replicated elsewhere in the adjoining areas.

REFERENCES

- Almeida, S.M. (1990). The Flora of Savantwadi, Maharashtra, India. Scientific Publishers, Jodhpur, India. Vol I, 411pp. & Vol II, 304pp.
- Barstow, M. (2019). Mimusops elengi. The IUCN Red List of Threatened Species 2019: e.T61964765A61964768. Downloaded on 26 June 2019. https://doi.org/10.2305/IUCN.UK.2019-1.RLTS. T61964765A61964768.en
- Bhagwat, S.A. & C. Rutte (2006). Sacred groves: potential for biodiversity management. Frontiers in Ecology and the Environment 4: 519–524. https://doi.org/10.1890/1540-9295(2006)4[519:SGPFBM]2.0.CO;2
- Bhagwat, S.A., C.G. Kushalappa, P.H. Williams & N.D. Brown (2005). The role of informal protected areas in maintaining biodiversity in the Western Ghats of India. *Ecology and Society* 10: 8.
- Bharmal, D.L., S.R. Aland, A.B. Mamlayya & G.P. Bhawane (2011). Butterflies of Amboli reserved forest Western Ghats Maharashtra. Electronic Journal of Environmental Sciences 4: 109–12.
- Biju, S.D., I.V. Bocxlaer, V.B. Giri, S.P. Loader & F. Bossuyt (2009). Two new endemic genera and a new species of toad (Anura: Bufonidae) from the Western Ghats of India. *BMC Research Notes* 2: 241.
- **BIOTIK (2008).** Biodiversity Informatics and co-operation in Taxonomy for Interactive shared Knowledge base. http://www.biotik.org/. Date of access 8 April 2020
- Botanic Gardens Conservation International (BGCI) & IUCN SSC Global Tree Specialist Group (2019). *Ficus exasperata*. *The IUCN Red List of Threatened Species* 2019: e.T143276941A143297460. Downloaded on 26 June 2019. https://doi.org/10.2305/IUCN.UK.2019-1.RLTS. T143276941A143297460.en
- **CEPF (2007).** Ecosystem Profile: Western Ghats and Sri Lanka Biodiversity Hotspot- Western Ghats Region. Critical Ecosystem Partnership Fund, 100pp. https://www.cepf.net/sites/default/files/ western-ghats-ecosystem-profile-english.pdf
- Conservation International (2019). https://www.conservation.org/ priorities/biodiversity-hotspots. Date of access 8 April 2020
- Ganesh, T., R. Ganesan, M.S. Devy, P. Davidar & K. Bawa (1996). Assessment of plant biodiversity at a mid-elevation evergreen forest of Kalakad–Mudanthurai Tiger Reserve, Western Ghats, India. *Current Science* 71(5): 379–392.

Ganeshaiah, K.N. & R.U. Shaanker (2007). Bioresources database:

documenting life. Biotech. News Letter 2(2):11-13.

- Giri, V.B., M. Wilkinson & D.J. Gower (2003). A new species of *Gegeneophis* Peters (Amphibia: Gymnophiona: Caeciliidae) from southern Maharashtra, India, with a key to the species of the genus. *Zootaxa* 351: 1–10. https://doi.org/10.11646/zootaxa.351.1.1
- Giri, V.B., V. Deepak, A. Captain, A. Das, S. Das, K.P. Rajkumar, R.L. Rathish, & D.J.Gower (2017). A new species of Rhabdops Boulenger, 1893 (Serpentes: Natricinae) from the northern Western Ghats region of India. *Zootaxa* 4319 (1): 27–52. https://doi.org/10.11646/ zootaxa.4319.1.2
- Joglekar, A., M. Tadwalkar, M. Mhaskar, B. Chavan, K.N. Ganeshaiah & A. Patwardhan (2015). Tree species composition in Koyna Wildlife Sanctuary, northern Western Ghats of India. *Current Science* 108(9): 1688–1693
- Kanade, R., M. Tadwalkar, C. Kushalappa & A. Patwardhan (2008). Vegetation composition and woody species diversity at Chandoli National Park, northern Western Ghats, India. *Current Science* 95: 637–646.
- Kasodekar, A., A. Jadhav, R. Bhagat, R. Pawar, V. Gupta & N. Kadoo (2019). The importance of conserving fragmented forest patches with high diversity of flowering plants in the northern Western Ghats:An example from Maharashtra,India. *Journal of Threatened Taxa* 11(7): 13833–13849. https://doi.org/10.11609/ jott.3296.11.7.13833-13849
- Kasturirangan, K., C.R. Babu, J.M. Mauskar, K. Chopra, J. Kishwan, D. Shankar, S. Narain, P.S. Roy, A. Tyagi & I. Chandrasekharan (2013). Report of the high level working group on Western Ghats. Ministry of Environment and Forests, Government of India. Vol I, xxiii+143pp.
- Kulkarni. B.G. (1988). Flora of India, Series III Flora of Sindhudurg District. Botanical Survey of India. Calcutta, India. 605 pp.
- Laurance, W.F., D.C. Useche, J. Rendeiro, M. Kalka, C.J.A. Bradshaw, S.P. Sloan, S.G. Laurance, M. Campbell, K. Abernethy, P. Alvarez, V.Arroyo-Rodriguez, P. Ashton, J. Benı'tez-Malvido, A. Blom, K.S. Bobo, C.H. Cannon, M. Cao, R. Carroll, C. Chapman, R. Coates, M. Cords, F. Danielsen, B.D. Dijn, E. Dinerstein, M.A. Donnelly, D. Edwards, F. Edwards, N. Farwig, P. Fashing, P. Forget, M. Foster, G. Gale, D. Harris, R. Harrison, J. Hart, S. Karpanty, W. J. Kress, J. Krishnaswamy, W. Logsdon, J. Lovett, W. Magnusson, F. Maisels, A.R. Marshall, D. McClearn, D. Mudappa, M.R. Nielsen, R. Pearson, N. Pitman, J.van der Ploeg, A. Plumptre, J. Poulsen, M. Quesada, H.Rainey, D. Robinson, C. Roetgers, F. Rovero, F. Scatena, C. Schulze, D. Sheil, T. Struhsaker, J. Terborgh, D. Thomas, R. Timm, J.N. Urbina-Cardona, K. Vasudevan, S. J. Wright, J.C. Arias-G. L. Arroyo, M. Ashton, P. Auzel, D. Babaasa, F. Babweteera, P. Baker, O. Banki, M. Bass, I. Bila-Isia, S. Blake, W. Brockelman, N. Brokaw, C.A. Bru"hl, S. Bunyavejchewin, J. Chao, J. Chave, R. Chellam, C.J. Clark, J. Clavijo, R. Congdon, R. Corlett, H. S. Dattaraja, C. Dave, G. Davies, B.M. Beisiegel, R.N.P. Silva, A.D. Fiore, A. Diesmos, R. Dirzo, D. Doran-Sheehy, M. Eaton, L. Emmons, A. Estrada, C. Ewango, L. Fedigan, F. Feer, B. Fruth, J.G. Willis, U. Goodale, S. Goodman, J.C. Guix, P. Guthiga, W. Haber, K. Hamer, I. Herbinger, J. Hill, Z. Huang, I.F. Sun, K. Ickes, A. Itoh, N. Ivanauskas, B. Jackes, J. Janovec, D. Janzen, M. Jiangming, C. Jin, T. Jones, H. Justiniano, E. Kalko, A. Kasangaki, T. Killeen, H. King, E. Klop, C. Knott, I. Kone', E. Kudavidanage, J.L.S. Ribeiro, J. Lattke, R. Laval, R. Lawton, M. Leal, M. Leighton, M. Lentino, C. Leonel, J. Lindsell, L. Ling-Ling, K. E. Linsenmair, E. Losos, A. Lugo, J. Lwanga, A.L. Mack, M. Martins, W.S. McGraw, R. McNab, L. Montag, J.M. Thompson, J. Nabe-Nielsen, M. Nakagawa, S. Nepal, M. Norconk, V. Novotny, S. O'Donnell, M. Opiang, P. Ouboter, K. Parker, N. Parthasarathy, K. Pisciotta, D. Prawiradilaga, C. Pringle, S. Rajathurai, U. Reichard, G. Reinartz, K. Renton, G. Revnolds, V. Revnolds, E. Rilev, M. Ro"del, J. Rothman, P. Round, S. Sakai, T. Sanaiotti, T. Savini, G. Schaab, J. Seidensticker, A. Siaka, M.R. Silman, T.B. Smith, S.S. Almeida, N. Sodhi, C. Stanford, K. Stewart, E. Stokes, K.E. Stoner, R. Sukumar, M. Surbeck, M. Tobler, T. Tscharntke, A. Turkalo, G. Umapathy, M. Weerd, J.V. Rivera, M. Venkataraman, L. Venn, C. Verea, C.V. Castilho, M. Waltert, B. Wang, D. Watts, W. Weber, P. West, D. Whitacre, K. Whitney, D. Wilkie, S. Williams, D.D. Wright, P. Wright,

L. Xiankai, P. Yonzon & F. Zamzani (2012). Averting biodiversity collapse in tropical forest protected areas. *Nature* 489: 290–294. https://doi.org/10.1038/nature11318

- Magurran, A.E. (2004). Measuring Biological Diversity. Blackwell Science Ltd., a Blackwell Publishing Company, 256pp.
- Maharashtra
 Government
 Resolution
 (2014)
 https://www.maharashtra.gov.in/site/Upload/

 Government%20Resolutions/Marathi/201406041536565919.pdf.
 Date of access 9 April 2020
- Mota, T., F.A. Carvalho, N.M. Ivanauskas & P.V. Eisenlohr (2017). On the relevance of floristic and quantitative studies to the restoration of degraded areas: the case of the Atlantic Forest hotspot. *AIMS Environmental Science* 4(1): 42–53. https://doi.org/10.3934/environsci.2017.1.42
- Myers, N., R. Mittermeler, C. Mittermeler, G. Fonseca & J. Kent (2000). Biodiversity hotspots for conservation priorities. *Nature* 403: 853–855. https://doi.org/10.1038/35002501
- Padhye, A., N. Modak & N. Dahanukar (2014). Indirana chiravasi, a new species of Leaping Frog (Anura: Ranixalidae) from Western Ghats of India. Journal of Threatened Taxa 6(10): 6293–6312.https://doi. org/10.11609/JoTT.04068.6293-312
- Pascal, J. (1988). Wet evergreen forests of Western Ghats: ecology, structure, floristic composition and succession. Insitut Francais Pondicherry, Travaux. *De la Science et Technique*, Pondicherry, 365pp.
- Puri, G.S., V.M. Meher-Homji, R.K. Gupta & S. Puri (1983). Forest Ecology: Phytogeography and Forest Conservation, Vol. I. Oxford and IBH, New Delhi, 583pp.
- **QGIS Development Team (2019).** QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org. Date of access 9th April 2020
- Satose, V., V. Choursiya, R. Deulkar & S. Menon (2018). Avian fauna of Amboli Ghat, Sindhudurg District, Maharashtra State, India. *Journal of Threatened Taxa* 10(13): 12805–12816. https://doi.org/10.11609/ jot.2886.10.13.12805-12816
- Shivraj, B., N. Barve, M. Kiran, R.U.Shaanker & K. Ganeshaiah (2000). Mapping of forests based on biological diversity to identify conservation sites: a case study from Udupi and South Canara districts of Karnataka. *Journal of Indian Institute of Science* 80: 531–536.
- Singh, N., P. Lakshminarasimhan, S. Karthikeyan & P. Prasanna (2001). Flora of Maharashtra State. Botanical Survey of India, Vol I (898+228pp) & II (1079+182pp).
- Singh, P., K. Karthigeyan, P. Lakshminarasimhan & S.S. Dash (2015). Endemic Vascular Plants of India. Botanical Survey of India, Kolkata, xvi+143pp.
- Sutherland, W.J. (Ed.) (2006). Ecological Census Techniques: A Handbook, 2nd Edition. Cambridge University Press, Cambridge, 450pp.
- The Biological Diversity Act (2002). The Gazette of India, Ministry of Law and Justice, Government of India. http://nbaindia.org/uploaded/act/BDACT_ENG.pdf
- Ved, D., D. Saha, K. Haridasan & K. Ravikumar (2015). Diospyros candolleana. The IUCN Red List of Threatened Species 2015: e.T173539A1389248. Downloaded on 17 June 2019. https://doi.org/10.2305/ IUCN.UK.2015-2.RLTS.T173539A1389248.en
- Ved, D., D. Saha, K. Ravikumar & K. Haridasan (2015). Garcinia indica. The IUCN Red List of Threatened Species 2015: e.T50126592A50131340. Downloaded on 26 June 2019. https://doi.org/10.2305/IUCN. UK.2015-2.RLTS.T50126592A50131340.en
- Watve, A., R. Gandhe & K. Gandhe (2003). Vegetation structure and composition of semi-evergreen forest fragments in Mulshi area of northern Western Ghats. *Annals of Forestry* 11(2): 155–165.
- World Conservation Monitoring Centre (1998). Knema attenuata. The IUCN Red List of Threatened Species 1998: e.T37122A10035137. Downloaded on 26 June 2019. https://doi.org/10.2305/IUCN.UK.1998.RLTS. T37122A10035137.en

Author details: MEDHAVI TADWALKAR is Assistant Professor at Annasaheb Kulkarni Department of Biodiversity MES Abasaheb Garware College and research associate at RANWA. Her research interests include forest ecology, plant phenology pattern and biodiversity studies. AMRUTA JOGLEKAR is a research scholar at Annasaheb Kulkarni Department of Biodiversity, MES Abasaheb Garware College and research associate at RANWA. Her research interests include forest ecology, seed biology and socioecological studies. MONALI MHASKAR is a research associate at RANWA. Her research interests include forest ecology and understanding human wildlife interaction. ANKUR PATWARDHAN is Head and Associate Professor at Annasaheb Kulkarni Department of Biodiversity, MES Abasaheb Garware College and Honorary secretary at RANWA. His research interests include plant resources study, bioprospecting and conservation of threatened plant taxa from northern Western Ghats, and documenting traditional knowledge and community conservation practices.

Author contribution: MT—concept design, data collection, data analysis; AJ—concept design, data collection, data analysis; MM—data collection; AP—concept design finalization, data collection, data analysis.

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

June 2020 | Vol. 12 | No. 9 | Pages: 15967–16194 Date of Publication: 26 June 2020 (Online & Print) DOI: 10.11609/jott.2020.12.9.15967-16194

www.threatenedtaxa.org

Communications

Dusky Langurs Trachypithecus obscurus (Reid, 1837) (Primates: Cercopithecidae) in Singapore: potential origin and conflicts with native primate species – Andie Ang, Sabrina Jabbar & Max Khoo, Pp. 15967–15974

A new report on mixed species association between Nilgiri Langurs Semnopithecus johnii and Tufted Grey Langurs S. priam (Primates: Cercopithecidae) in the Nilgiri Biosphere Reserve, Western Ghats, India

- K.S. Chetan Nag, Pp. 15975-15984

A review of the bacular morphology of some Indian bats (Mammalia: Chiroptera) – Bhargavi Srinivasulu, Harpreet Kaur, Tariq Ahmed Shah, Gundena Devender, Asad Gopi, Sreehari Raman & Chelmala Srinivasulu, Pp. 15985–16005

Status of the Critically Endangered Bengal Florican *Houbaropsis bengalensis* (Gmelin, 1789) in Koshi Tappu Wildlife Reserve, Nepal

– Hem Sagar Baral, Tek Raj Bhatt, Sailendra Raj Giri, Ashok Kumar Ram, Shyam Kumar Shah, Laxman Prasad Poudyal, Dhiraj Chaudhary, Gitanjali Bhattacharya & Rajan Amin, Pp. 16006–16012

Observations on breeding behaviour of a pair of endangered Egyptian Vultures *Neophron percnopterus* (Linnaeus, 1758) over three breeding seasons in the plains of Punjab, India – Charn Kumar, Amritpal Singh Kaleka & Sandeep Kaur Thind, Pp. 16013–16020

Additions to the cicada (Insecta: Hemiptera: Cicadidae) fauna of India: first report and range extension of four species with notes on their natural history from Meghalaya –Vivek Sarkar, Cuckoo Mahapatra, Pratyush P. Mohapatra & Manoj V. Nair, Pp. 16021–16042

The perceptions of high school students on the habitat of the crab *Ucides cordatus* (Linnaeus, 1763) (Crustacea: Decapoda: Ucididae) in northern Rio de Janeiro State, southeastern Brazil

– Laiza Fernanda Quintanilha Ribeiro, Laura Helena de Oliveira Côrtes & Ana Paula Madeira Di Beneditto, Pp. 16043–16047

Woody species diversity from proposed ecologically sensitive area of northern Western Ghats: implications for biodiversity management – M. Tadwalkar, A. Joglekar, M. Mhaskar & A. Patwardhan, Pp. 16048–16063

Resolving taxonomic problems in the genus *Ceropegia* L. (Apocynaceae: Asclepiadoideae) with vegetative micromorphology

– Savita Sanjaykumar Rahangdale & Sanjaykumar Ramlal Rahangdale, Pp. 16064–16076

A checklist of angiosperm flora of low elevation lateritic hills of northern Kerala, India – K.A. Sreejith, V.B. Sreekumar, P. Prashob, S. Nita, M.P. Prejith & M.S. Sanil, Pp. 16077–16098

Phytodiversity of chasmophytic habitats at Olichuchattam Waterfalls, Kerala, India – Arun Christy & Binu Thomas, Pp. 16099–16109

Contribution to the macromycetes of West Bengal, India: 51–56 – Diptosh Das, Entaj Tarafder, Meghma Bera, Anirban Roy & Krishnendu Acharya, Pp. 16110–16122

Short Communications

Catalogue of herpetological specimens from peninsular India at the Sálim Ali Centre for Ornithology & Natural History (SACON), India

- S.R. Ganesh, S. Bhupathy, P. Karthik, G. Babu Rao & S. Babu, Pp. 16123-16135

Osteological description of Indian Skipper Frog *Euphlyctis cyanophlyctis* (Anura: Dicroglossidae) from the Western Ghats of India – Pankaj A. Gorule, Sachin M. Gosavi, Sanjay S. Kharat & Chandani R. Verma, Pp. 16136–

– Palikaj A. Gorule, Sachim M. Gosavi, Sanjay S. Kharat & Chandam R. Verma, Pp. 10150– 16142 DNA barcode reveals the occurrence of Palearctic *Olepa schleini* Witt et al., 2005 (Lepidoptera: Erebidae: Arctiinae) from peninsular India with morphological variations and a new subspecies

– Aparna Sureshchandra Kalawate, Shital Pawara, A. Shabnam & K.P. Dinesh, Pp. 16143–16152

Present status of the genus *Sphrageidus* Maes, 1984 (Lepidoptera: Erebidae: Lymantriinae) from India

- Amritpal Singh Kaleka, Devinder Singh & Gagan Preet Kour Bali, Pp. 16153-16160

Early stages of Nilgiri Grass Yellow *Eurema nilgiriensis* (Yata, 1990) (Lepidoptera: Pieridae), with a note on its range extension in the Kerala part of the Western Ghats, India

Balakrishnan Valappil & V.K. Chandrasekharan, Pp. 16161–16165

Notes

Breeding site records of three sympatric vultures in a mountainous cliff in Kahara-Thathri, Jammu & Kashmir, India

- Muzaffar A. Kichloo, Sudesh Kumar & Neeraj Sharma, Pp. 16166-16169

First distribution record of Elongated Tortoise Indotestudo elongata (Blyth, 1853) (Reptilia: Testudines: Testudinidae) from Bihar, India – Arif, Sourabh Verma, Ayesha Mohammad Maslehuddin, Uttam, Ambarish Kumar Mall,

Gaurav Ojha & Hemkant Roy, Pp. 16170–16172

The niche of shrimp stocks (Xiphopenaeus kroyeri Heller, 1862) from southeastern Brazil: a stable isotope approach

 – Keltony de Aquino Ferreira, Leandro Rabello Monteiro & Ana Paula Madeira Di Beneditto, Pp. 16173–16176

First record of the White Tufted Royal *Pratapa deva lila* Moore, [1884] (Lepidoptera: Lycaenidae: Theclinae) from Himachal Pradesh, extending its known range westwards – Sanjay Sondhi, Pp. 16177–16179

Range extension of the Lilac Silverline Apharitis lilacinus to southern Rajasthan and a review of the literature

–K.S. Gopi Sundar, Swati Kittur, Vijay Kumar Koli & Utkarsh Prajapati, Pp. 16180–16182

A record of gynandromorphism in the libellulid dragonfly *Crocothemis servilia* (Insecta: Odonata) from India – R.V. Renjith & A. Vivek Chandran, Pp. 16183–16186

Carcass consumption by Nasutitermes callimorphus (Blattodea: Isoptera) in highland forests from Brazil

 – Igor Eloi, Mário Herculano de Oliveira & Maria Avany Bezerra-Gusmão, Pp. 16187– 16189

New records of nasutiform termite (Nasutitermitinae: Termitidae: Isoptera) from Meghalaya, India

- Khirod Sankar Das & Sudipta Choudhury, Pp. 16190-16192

Corrigendum

Corrections to A citizens science approach to monitoring of the Lion Panthera leo (Carnivora: Felidae) population in Niokolo-Koba National Park, Senegal – Dimitri Dagorne, Abdoulaye Kanté & John B. Rose, Pp. 16193–16194

Publisher & Host

Member