Journal of Threatened Taxa | www.threatenedtaxa.org | 26 May 2020 | 12(8): 15784–15793

 

 

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) 

doi: https://doi.org/10.11609/jott.5479.12.8.15784-15793

#5479 | Received 19 October 2019 | Final received 15 February 2020 | Finally accepted 29 March 2020

 

 

 

Diversity and synanthropy of flies (Diptera: Calyptratae) from Ecuador, with new records for the country

 

Karen Blacio 1, Jonathan Liria 2 & Ana Soto-Vivas 3

 

1,3 Carrera de Ciencias Biológica y Ambientales, Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Quito 170129, Ecuador.

2,3 Grupo de Investigación en Población y Ambiente, Universidad Regional Amazónica Ikiam, Vía Tena, Muyuna Kilómetro 7, Napo, Ecuador.

1 vick9030@gmail.com, 2 jonathan.liria@gmail.com, 3 aysoto@uce.edu.ec (corresponding author)

 

 

Abstract: The Calyptratae are one of the most diverse groups of Diptera.   Some species have immature states involved in the decomposition of organic matter of animal origin (i.e., they are sarcosaprophagous).  In this study, we examined the diversity and synanthropy of sarcosaprophagous calyptrates in several environmental zones of the Ecuadorian Andes.  Captures were performed in an urban zone located in the Tocachi community with monocultures (MC) and polycultures (PC), a rural zone with an agroecological farming system (AFS), and a forest zone with a montane forest located in the Parque Arqueológico Cochasquí (PAC) and the Cochasquí montane forest (CMF).  A total of 2,925 specimens of Calyptratae were collected, representing 38 morphotypes and 17 species.  Four are new reports for Ecuador: Dolichophaonia trigona (Shannon & Del Ponte), Phaonia trispila (Bigot), Compsomyiops melloi Dear, and Calliphora lopesi Mello.  CMF and PAC presented high abundance and richness, followed by AFS, MC, and PC; PAC showed the highest diversity, in contrast to lowest in MC; the evenness decreased from forest to urban zones.  Species that exhibited a preference for human settlements (positive synanthropic index) included Limnophora marginata Stein, Phaonia trispila, Lucilia cuprina (Wiedemann), Calliphora lopesi, Compsomyiops melloi, and Calliphora nigribasis Macquart.  Those with a preference for uninhabited areas (negative index) included Tricharaea sp1, Sarconesiopsis magellanica (Le Guillou), and Sarconesia chlorogaster (Wiedemann).

 

Keywords: Blow flies, Calliphoridae, flesh flies, Muscidae, Sarcophagidae.

 

 

 

Editor: Michael Kerry, East Sussex, UK.           Date of publication: 26 May 2020 (online & print)

 

Citation: Blacio, K., J. Liria & A.S. Vivas (2020). Diversity and synanthropy of flies (Diptera: Calyptratae) from Ecuador, with new records for the country. Journal of Threatened Taxa 12(8): 15784–15793. https://doi.org/10.11609/jott.5479.12.8.15784-15793

 

Copyright: © Blacio et al. 2020. Creative Commons Attribution 4.0 International License.  JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

 

Funding: Facultad de Ciencias Biológicas - Universidad Central del Ecuador (Grant cif3-cv-fcb-3).

 

Competing interests: The authors declare no competing interests. 

 

Author details: Ana Soto-Vivas PhD, is a Lecturer-Researcher at the Central University of Ecuador. Her research interests are medical entomology and geometric morphometrics. Karen Blacio Biologist, is a graduated student of Biology program of UCE. Her research interests are Diptera and others arthropod of forensic importance. Jonathan Liria PhD, is a Lecturer-Researcher at the Ikiam University. His research interests are medical entomology, geometric morphometrics, and Culicidae systematics and biogeography.

 

Author contribution: KB and ASV conducted the Diptera identification and wrote the first manuscript draft. KB and ASV conducted the specimens collections. ASV and JL wrote the final manuscript. ASV prepared the specimen photographs. All authors elaborated the data analysis.

 

Acknowledgements: Financial support for this work was provided by Dirección de Investigación – Universidad Central del Ecuador (Grant cif3-cv-fcb-3). The authors thank Yesenia Tobar for the dipteran specimens photographs. We thank Biol. Alex Pazmiño-Palomino for specimens cataloging.

 

 

 

INTRODUCTION

 

The highly diverse Dipteran infraorder Calyptratae has members that widely distributed through most biogeographic regions (Wiegmann et al. 2011; Lambkin et al. 2013).  These insects are characterized by a high capacity for decomposing organic matter, where their larvae play an important role in nutrient recycling (Byrd & Castner 2001; Kimberly et al. 2005).  Some species are important as disease vectors and feature in medico-legal investigations (Catts & Mullen 2002; Benecke et al. 2004; Magaña et al. 2006).  Several Calyptratae are well adapted to human-perturbed habitats, forming an anthropo-biocenosis (Polvoný 1971).  This taxon is highly specialized in some feeding habits: Saprophagous, coprophagous, necrophagous, hematophagous and pollen feeders (Hernández & Dzul 2008).

In Ecuador, calyptrate species have been recorded in Muscidae (77 species), Calliphoridae (23 species), Sarcophagidae (18 species), and Fanniidae (4 species) (Löwenberg-Neto & Carvalho 2013; Whitworth 2014; Salazar & Donoso 2015).  Ecological investigations in sarcosaprophagous dipterans are scarce.  Torres (2016) studied blowfly diversity in different types of human-modified and wild environments, and noted that diversity decreased and species dominance increased in human environments (urban and rural), in contrast to wild habitats.

This study aimed to describe the diversity and synanthropy in Calyptratae from a protected forest in the Archaeological Cochasquí Park, and in human environments in the Tocachi parish, Pedro Moncayo canton.  This investigation was authorized with permission Nº 007-2018-RIC-FLO-FAU-DPAP-MA and collection Nº 007-2019-DPAP-MA.

 

 

MATERIAL AND METHODS

 

Study area

The study was undertaken in the Pedro Moncayo canton, north-west of Pichincha province, on the southern slope of Nudo de Mojanda.  The total area comprises 339.10km2 with four life zones in the High Andino zoogeographic level (1,730–2,952 m): lower montane dry forest, montane moist forest, lower montane moist forest, and montane wet forest (Albuja et al. 1980; PDOT 2015).  In this area, three types of environment (urban, rural, and forest) were identified: (i) urban zone located in the Tocachi community (-0.0352S & 78.282W), characterized by basic services, with paved streets, a school area, a housing yard consisting of monocultures (MC) and polycultures (PC); (ii) rural zone located 1km away from the community (-0.048S & 78.290W), characterized by a small human population (< 30 permanent inhabitants) without basic services in an agro-ecological farming system (AFS); (iii) forest zone corresponding to low human disturbance, with a lower montane forest located in the Parque Arqueológico Cochasquí (PAC) (-0.059S & 78.304W) and the Cochasquí montane forest (CMF) (-0.058S & 78.304W).

 

Sampling

Flies were captured with Morón & Terrón (1984) modified necrotraps made of two transparent plastic soup containers, with an internal funnel formed from a foam container.  Traps were baited with fish viscera and beef, placed 1m above the ground (Uribe-M et al. 2010; Moreno et al. 2016); 100 traps separated by 30m each following transects in each site (MC, PC, AFS, PAC and CMF) for a period of 48 hours each month from May to November 2017.  Trapped specimens were separated into morphotypes, mounted and identified using taxonomic keys (Mc Alpine et al. 1981; Carvalho 2002; Toro 2007; Amat et al. 2008; Carvalho & Mello 2008; Buenaventura et al. 2009; Marshall et al. 2011; Vairo et al. 2011; Patitucci et al. 2013a).

 

Data analysis

We evaluated the local diversity using Hill numbers (Hill 1973; Moreno 2001) for site diversity estimation (N0 = S, N1 = e H’ and N2 = 1 / λ; where S corresponds to species richness, H’ Shannon-Wiener index and λ Simpson index); for evenness the E2,1 Alatalo index (Heip et al. 1998) was calculated using the formula: N1 - 1 / N2 - 1.  The diversity between sites was evaluated using the Jaccard (quantitative) similarity index.  All analyses were made using PAST (Hammer et al. 2001) and EstimateS (Colwell 2019) software.

The synanthropic index (SI) was calculated according to Nuorteva (1963): SI = (2a+b-2c)/2, where “a” corresponds to the percentage of individuals of each species collected in the urban zone, “b” the percentage of the same species collected in the rural zone, and “c” the percentage of the same species collected in the forest zone.  The SI fluctuates between +100 to -100, where a value of +100 indicates a strong species preference for densely populated urban areas, -100 indicates a complete avoidance of human settlements and intermediate values indicate differential degrees of synanthropy.  For this analysis, only those species with 10 or more individuals were considered.

 

RESULTS

 

A total of 2,925 specimens of Calyptratae were collected, representing 38 morphotypes and 17 species; four of these are new reports for Ecuador (Table 1).  Muscidae and Sarcophagidae representing 39.6% and 24.7% abundance, respectively.  In Muscidae, the most common taxa were Limnophora marginata Stein, 1904, followed by Phaonia trispila (Bigot, 1885), Dolichophaonia trigona (Shannon & Del Ponte, 1926), Phaonia sp1, and Dolichophaonia sp1.  Sarcophagidae was commonly represented by Tricharea sp1 and Peckia (Sarcodexia) sp1.  In Calliphoridae, the most abundant species were: Sarconesiopsis magellanica (Le Guillou, 1842), Calliphora nigribasis Macquart, 1851, and Lucilia cuprina (Wiedemann, 1830).  Finally, Tachinidae comprises a high number of morphotypes (25) and two species: Eulasiopalpus nr. niveus Townsend, 1914 and Eulasiopalpus nr. vittatus Curran, 1947.

Concerning the abundance and species composition between sites, CMF and PAC presented high abundance and richness, followed by AFS, MC, and PC.  The PAC presented the highest N1 and N2 Hill diversity index, in contrast to MC which showed the lowest; PC presented intermediate diversity values.  On the other hand, evenness F2,1 index decreased from forest to urban sites: PAC-CMF > AFS > PC > MC.  Figure 1 shows the dendrogram based on Jaccard index similarity; PAC is separated from the other sites, and CMF and AFS form a cluster separated from the crops group (MC and PC).

The synanthropic index was calculated for the most common species (10 individuals or more).  In this study, the species and morphotypes that exhibited positive synanthropic index values were (Table 2): Limnophora marginata Stein, 1904 (+86.62) showing strong preference for human settlements, Peckia (Sarcodexia) sp1 (+8.60), Phaonia trispila (+6.24), Lucilia cuprina (Wiedemann, 1830) (+5.48), Calliphora lopesi Mello, 1962 and Compsomyiops melloi Dear, 1985 with (+2.98), and Calliphora nigribasis (+2.57), all with a preference for human settlements.  The values for the other species and morphotypes were negative (showing preference for uninhabited areas): Fannidae sp1 (-40.89), Tricharaea sp1 (-14.94), Sarconesiopsis magellanica (-5.55), Scatophagidae sp1 (-3.12), Sarconesia chlorogaster (Wiedemann, 1831) (-1.75), Sarcophagidae sp1 (-1.36), and Boettcheria sp1 (-0.11).

The list of new records with diagnostic characters and distribution is given below:

 

Family Calliphoridae

Subfamily Calliphorinae

Calliphora lopesi Mello, 1962 (Image 1A)

This species of Calliphora can be distinguished by its bare stem vein, lower calypter setose above, bare suprasquamal ridge, thorax dull grey with whitish microtomentum, and abdomen subshining metallic blue with more or less whitish microtomentum.  Other characters include a robust orange palpus with stout black setae; parafacial black to brown, lower half sometimes reddish to orange; parafacial with one or two changeable spots in both sexes, females also with a changeable spot midway on fronto-orbital plate when viewed from above; gena usually brown or black, genal groove black in C. nigribasis.  Thorax with typical chaetotaxy; normally two postsutural intra-alars.  Base of wing infuscated along costa to apex of costal cell, angling back to anterior edge of basal medial and posterior cubital cells, intensity and extent of area with color somewhat variable;  and fringe of lower calypter normally brown C. nigribasis, rim and fringe are usually white or pale in the remaining four in C. lopesi.

Diagnostic characters: Differ from C. nigribasis by the reddish genal groove (black in C. nigribasis); rim and fringe of lower calypter white (dark reddish-brown in C. nigribasis); male frons narrower (related to head width), averaging 0.066 (0.06–0.07/5) (whereas averaging 0.102 (0.09–0.12/5) in C. nigribasis); male surstylus and cercus slender (whereas shorter and more stout in C. nigribasis); ST5 normal (exceptionally broad in C. nigribasis); female T5 without incision (T5 with incision in C. nigribasis) (Whitworth & Rognes, 2012).

Material examined: MECN-EN-DIP-4862, 17.xi.2017, 1 female, polyculture in urban zone located in the Tocachi community, Pichincha, -0.035S & 78.282W, 2,816m, coll.

Blacio & Soto-Vivas.

Distribution (Whitworth & Rognes 2012; Kosmann et

al. 2013): Brazil, Uruguay.

 

Subfamily Chrysomyinae

Compsomyiops melloi Dear, 1985 (Image 1B)

Compsomyiops species can be distinguished by the haired parafacials, pubescent greater ampulla and normal sized palpi (Dear 1985).

Diagnostic characters:  Differs from C. fulvicrura (Robineau-Desvoidy, 1830) frons 0.40 of the head width; frontal vitta broader than a fronto-orbital plate measured at lunula; parafacial hairs dark and proclinate; genae silvery-yellow dusted anteriorly; frontal vitta orange-brown dusted; calypters pale brown (Dear 1985).

Material examined: MECN-EN-DIP-4861, MECN-EN-DIP-4865, MECN-EN-DIP-4866, MECN-EN-DIP-4867, MECN-EN-DIP-4868,  22.x.2017, 5 females, polyculture in urban zone located in the Tocachi community, Pichincha, -0.035S & 78.282W, 2,816m, coll. Blacio & Soto-Vivas.

Distribution (Dear 1985; Amat 2009; Kosmann et al. 2013): Colombia, Mexico.

 

Family Muscidae

Subfamily Phaoniinae

Dolichophaonia trigona (Shannon & Del Ponte, 1926) (Image 2A)

Dolichophaonia species are characterized by eye with short cilia, arista plumose, presutural acrostichals often differentiated, dorsocentral setae 2:3-4, prealar present, except in D. vockerothi (Carvalho, 1983), shorter than notopleural anterior seta, katepisternals 1:2, meron haired or not; wing veins bare, vein M parallel or very slightly forward-curved apically, calcar present, about twice as long as the basal width of hind tibia; female: clypeus, in lateral view, with a strong, hook-shaped anterior tip, posteriorly with a prominent sclerotization, ovipositor with large tergites and sternites (Carvalho & Couri 2002).

Diagnostic characters: One prepimeral setae development; mid tibia often with 2 median posterior setae; female palpus more dilated than in male; sternite 1 bare; pre-alar present, shorter than noto-pleural anterior seta; two intra-alars post-sutural setae; wing with two conspicuous clouds on cross-veins dm-cu; upper calypter yellowish with dark brown margins; wing with costal margin yellowish; dorso-central setae 2:3-4 (Carvalho & Couri 2002).

Material examined:  MECN-EN-DIP-4859, MECN-EN-DIP-4869, MECN-EN-DIP-4870, 22.ix.2017, 3 females, Cochasquí

montane forest, Pichincha, -0.058969S & 78.304351W, 3052m, coll. Blacio & Soto-Vivas. MECN-EN-DIP-4871, MECN-EN-DIP-4872, 22.ix.2017, 2 females, monoculture in urban zone located in the Tocachi community, Pichincha, -0.035S & 78.282W, 2,816m, coll. Blacio & Soto-Vivas.

Distribution (Löwenberg-Neto & Carvalho 2013): Argentina, Brazil, Uruguay.

 

Phaonia trispila (Bigot, 1885) (Image 2B)

Phaonia species are characterized by: eyes ciliated, arista plumose, dorsocentral setae 1–2:3–4, notopleuron with covering setulae and with two setae, the posterior one weaker; pre-alar seta present (absent in P. lentiginosa Snyder), lower calypter glossiform, Phaonia type, Rs node bare or ciliated, vein M usually curved forward apically, hind tibia on postero-dorsal surface with the calcar about as long as the width of the tibia at calcar insertion; female: ovipositor elongated, tubular, tergites narrow; stemite 8 reduced to two sclerites, microtrichia usually well-developed only on the membrane, cerci free (Carvalho & Couri 2002).

Diagnostic characters: General coloration black; scutellum with a yellowish-brown apex; wing with dark brown macules in the anterior and posterior transverse veins and a slight spot at the end of the Sc vein; posterior spiracle on the PV margin without setae.  Male: Paramere without concavity on the ventral surface; gonopod with the anterior region not exceeding the paramere width; ventral face curved.  Female: proboscis in lateral view, with the clypeus, in the anterior region, with a strong tip; dorsal and basal haustellum sclerites with many setae (Coelho 2000).

Material examined: MECN-EN-DIP-4864, MECN-EN-DIP-4860, 22.ix.2017, 2 females, Cochasquí montane forest, Pichincha, -0.058S & 78.304W, 3,052m, coll. Blacio & Soto-Vivas. MECN-EN-DIP-4857, 22.ix.2017, 1 female, monoculture in urban zone located in the Tocachi community, Pichincha, -0.035S & 78.282W, 2,816m, coll. Blacio & Soto-Vivas. MECN-EN-DIP-4858, 17.xi.2017, 1 female, polyculture in urban zone located in the Tocachi community, Pichincha, -0.035S & 78.282W, 2,816m, coll. Blacio & Soto-Vivas. MECN-EN-DIP-4863, 22.x.2017, 1 female, agroecological farming system 1km away from the Tocachi community, Pichincha, -0.048S & 78.290W, 3,000m, coll. Blacio & Soto-Vivas.

Distribution (Löwenberg-Neto & Carvalho 2013): Argentina, Brazil, Venezuela, Uruguay.

 

 

DISCUSSION

 

The most abundant and diverse Calyptratae community was observed in the wild environment (Cochasquí Archaeological Park).  This suggests that the species share the available resources, from pollen to organic matter in animal and plant decay (Baumgartner & Greenberg 1985; Carson & Schnitzer 2008).  In contrast to the urban area (mono- and polycultures) where the richness was lower, possibly due to anthropogenic modifications such as garbage and drains which support flies adapted to these environments (Carvalho et al. 1984; Souza et al. 2014).  On the other hand, the dipteran community similarity found between urban areas and the montane forest and agro-ecological farming system could be associated with the fact that Tocachi rural and urban environments are partially preserved, due to the agricultural practices that are carried out in some areas.

Muscidae were the most abundant taxa in this study; adults can be predatory, hematophagous, saprophagous or necrophagous, living in varied habitats, such as dung, decomposing organic vegetable or animal matter, wood, fungi, nests, and dens, among others (Couri & Carvalho 2005).  These flies are relatively common at high altitude regions, where they are important as pollinators and floral visitors and account for a high proportion of fauna (Proctor et al. 1996; Carvalho et al. 2005; Pérez & Wolff 2011).  The most common species were L. marginata, D. trigona and P. trispila, the last two species have not been collected previously in Ecuador; D. trigona is reported in Argentina, Brazil, and Uruguay, and P. trispila has been registered in Argentina, Brazil, Venezuela and Uruguay (Löwenberg-Neto & Carvalho 2013).  In this study, L. marginata showed a highly positive synanthropic index, suggesting strong preference for human settlements, in contrast to P. trispila that showed a low positive synanthropic index, indicating a mild preference for human settlements.  Patitucci et al. (2013b) studied the ecological assemblages of saprophagous muscids in three sites with different urbanization levels.  Particularly, P. trispila showed high abundance in rural areas, and a negative synanthropic index associated with complete avoidance of human settlements.  Sarcophagidae was mainly represented by Tricharaea sp1, Peckia (Sarcodexia) sp1 and Boettcheria sp1; this family have a wide variety of habits, some species being scavengers, coprophages, hosts of ant and termite nests, some cause myiasis to amphibians and mammals, others are predators on arachnid eggs, butterfly larvae and bee pupae (Pape et al. 2004).  Yepes-Guarisas et al. (2013) investigated the ecology and synanthropy of Sarcophagidae from Antioquia-Colombia.  These authors found that Tricharaea spp. and Pekia (Sarcodexia) lambens (Wiedemann, 1830), showed a positive synanthropic index.  Pinilla et al. (2012) studied the synanthropy of Calliphoridae and Sarcophagidae in three zones in Bogotá-Colombia.  They reported a Boettcheria morphotype associated mainly in the forest but also represented in rural areas.

With Calliphoridae, most species are sarcosaprophagous, but there are also predators and parasitoids.  Souza et al. (2014) point out that this family is associated with regenerating forest, due to certain species colonizing at some stages.  Also, studies with different degrees of urbanization showed that calliphorids prefer baits of animal origin (D’Almeida & Almeida 1998).  This taxon is one of the most important families representative of synanthropic species (Souza & Zuben 2012).  In the present study, the Calliphoridae species had a greater relationship in wild and rural environments, however, they are also present in the urban environment; this could be due to small vegetation patches and the association with domestic or farm animals.  S. magellanica was the most abundant species and demonstrated a preference for uninhabited areas; Figueroa & Linhares (2002) and Pinilla et al. (2012) stated that this species was abundant in rural and wild areas.  In concordance with our results, S. chlorogaster was reported by Schnack et al. (1989) in Argentina and Vianna et al. (1998) in Brazil, as a species with independence from human settlements.  L. cuprina was found to be widely distributed in rural and urban areas on Pedro Moncayo canton, in particular, densely inhabited areas.  Several authors associate L. cuprina with densely populated areas and due to this, this species is considered to be a medical-veterinary important species because it is associated with the transmission of pathogenic micro-organisms and primary myiasis in sheep and humans (Vianna et al. 1998; Souza & Zuben 2012).  C. melloi and C. lopesi were collected for the first time in Ecuador in this study.  Dear (1985), Amat (2009) and Kosmann et al. (2013) recorded C. melloi in Mexico and Colombia, and Whitworth & Rognes (2012), and Kosmann et al. (2013) reported C. lopesi in Brazil and Uruguay.  Finally, C. lopesi and C. nigribasis showed independence from human settlements; similar findings to those reported by Vianna et al. (1998) and Pinilla et al. (2012), in Brazil and Colombia, respectively.

Finally, Tachinidae presented a high number of morphotypes and two species Eulasiopalpus nr. niveus and Eulasiopalpus nr. vittatus.  This family is extremely diverse in the Neotropics, a common taxon at middle  elevations  (1,000–2,000 m) along the mountain chains of tropical Central and South America (Stireman et al. 2006; Stireman 2007).  Only a fraction of Neotropical Tachinidae have been described, and for most of those that have been described, the life history host associations, or behavior are poorly known (Guimarães 1977; Toma 2012).  The tachinid species provide various ecosystem services in the Andean forests, their value as pest controllers and pollinators, favors the variability of the forest flora as well as maintaining the balance of the ecosystem by regulating populations (Ssymank et al. 2008; Quintero et al. 2017).

Urbanization processes cause an ecosystem negative impact by decreasing the proportion of native species, while introduced species usually occupy urbanized environments due to pre-adaptation processes (McKinney 2002; 2008).  Several authors affirm that the introduced species proportion increases as it approaches large heavily urbanized sectors; in contrast to those native species that are more abundant in less modified sectors.  In sarco-saprophagous dipterans, the environmental colonization success depends on their morphology, flexibility in the use of different resources, as well as on life history (Vianna et al. 1998; Uribe-M et al. 2010; Mulieri et al. 2011; Pinilla et al. 2012). 

 

Table 1.  Absolute frequency of Calyptratae in five sites in Pedro Moncayo canton, Ecuador from May to November 2017. * New report from Ecuador.

 

Family

Species / morphotype

PAC

CMF

AFS

PC

MC

Total

Calliphoridae

Calliphora lopesi Mello, 1962*

0

0

0

10

0

10

 

Calliphora nigribasis Macquart, 1851

9

1

10

10

2

32

 

Chlorobrachycoma splendida Townsend, 1918

2

0

0

2

0

4

 

Chrysomya albiceps (Wiedemann, 1819)

1

0

0

0

1

2

 

Cochliomyia hominivorax (Coquerel, 1858)

7

0

0

0

0

7

 

Cochliomyia macellaria (Fabricius, 1775)

1

0

0

0

0

1

 

Compsomyiops melloi Dear, 1985*

0

0

0

10

0

10

 

Lucilia cuprina (Wiedemann, 1830)

1

0

0

19

0

20

 

Lucilia eximia (Wiedemann, 1819)

0

0

0

3

0

3

 

Lucilia sericata (Meigen, 1826)

0

0

0

0

5

5

 

Sarconesia chlorogaster (Wiedemann, 1831)

10

0

0

0

0

10

 

Sarconesiopsis magellanica (Le Guillou, 1842)

87

67

28

17

35

234

 

Roraimomusca roraima Townsend, 1935

2

0

0

0

0

2

 

Rhiniinae sp1

0

0

0

2

0

2

Sarcophagidae

Blaesoxipha sp1

0

0

1

0

0

1

 

Boettcheria sp1

11

7

8

2

5

33

 

Peckia sp1

0

0

0

1

0

1

 

Peckia (Sarcodexia) sp1

61

59

97

25

40

282

 

Tricharaea sp1

189

44

82

38

20

373

 

Sarcophagidae sp1

16

1

10

0

3

30

 

Sarcophagidae sp2

0

0

0

0

1

1

Muscidae

Dolichophaonia sp1

0

1

0

0

3

4

 

Dolichophaonia trigona (Shannon & Del Ponte, 1926)*

0

4

0

0

4

8

 

Phaonia trispila (Bigot, 1885)*

1

13

15

16

7

52

 

Phaonia sp1

0

0

7

0

1

8

 

Limnophora marginata Stein, 1904

43

333

336

158

210

1080

Fanniidae

Fanniidae sp1

64

413

60

14

17

568

Scatophagidae

Scatophagidae sp1

51

10

24

8

10

103

Tachinidae

Eulasiopalpus nr. niveus Townsend, 1914

0

1

0

0

0

1

 

Eulasiopalpus nr. vittatus Curran, 1947

0

0

1

0

0

1

 

Adejeania sp1

0

0

4

0

0

4

 

Tachinidae sp1

1

0

0

0

0

1

 

Tachinidae sp2

1

0

0

0

0

1

 

Tachinidae sp3

1

0

0

0

0

1

 

Tachinidae sp4

1

0

0

0

0

1

 

Tachinidae sp5

1

0

0

0

0

1

 

Tachinidae sp6

1

0

0

0

0

1

 

Tachinidae sp7

4

0

0

0

0

4

 

Tachinidae sp8

5

0

0

0

0

5

 

Tachinidae sp9

0

1

0

0

0

1

 

Tachinidae sp10

0

1

0

0

0

1

 

Tachinidae sp11

0

1

0

0

0

1

 

Tachinidae sp13

0

1

0

0

0

1

 

Tachinidae sp14

0

1

0

0

0

1

 

Tachinidae sp15

0

1

0

0

0

1

 

Tachinidae sp16

0

1

0

0

0

1

 

Tachinidae sp17

0

1

0

0

0

1

 

Tachinidae sp18

0

1

0

0

0

1

 

Tachinidae sp19

0

1

0

0

0

1

 

Tachinidae sp20

0

0

0

0

1

1

 

Tachinidae sp21

0

0

0

0

1

1

 

Tachinidae sp22

0

0

0

0

1

1

 

Tachinidae sp23

0

0

3

0

0

3

 

Tachinidae sp26

0

0

1

0

0

1

 

Tachinidae sp27

0

0

0

1

0

1

 

Hill N0 (=S)

25

23

16

17

19

 

 

       N1 (eH)

8.51

4.44

5.63

7.07

5.10

 

 

       N2 (1/λ)

5.80

3.19

3.51

3.96

2.81

 

 

Alatalo E2,1 (N1-1/N2-1)

0.64

0.64

0.54

0.49

0.44

 

 

PAC—Parque Arqueológico Cochasquí | CMF-—Cochasquí montane forest | AFS—Agroecologycal farming system | PC—Polyculture | MC—Monoculture.

 

 

Table 2.  Synanthropic index of Calyptratae in five sites in Pedro Moncayo canton, Ecuador from May to November 2017 from those species with a number equal or higher to 10 individuals.

 

Species / morphotype

PAC

%

CMF

%

AFS

%

PC

%

MC

%

Total

SI

Sarconesiopsis magellanica (Le Guillou, 1842)

87

15.24

67

6.95

28

4.08

17

5.06

35

9.54

234

-5,55

Sarconesia chlorogaster (Wiedemann, 1831)

10

1.75

0

 

0

 

0

 

0

 

10

-1,75

Calliphora nigribasis Macquart, 1851

9

1.58

1

0.10

10

1.46

10

2.98

2

0.54

32

2,57

Calliphora lopesi Mello, 1962

0

 

0

 

0

 

10

2.98

0

 

10

2,98

Compsomyops melloi (Wiedemann, 1819)

0

 

0

 

0

 

10

2.98

0

 

10

2,98

Lucilia cuprina (Wiedemann, 1830)

1

0.18

0

 

0

 

19

5.65

0

 

20

5,48

Tricharaea sp1

189

33.10

44

4.56

82

11.94

38

11.31

20

5.45

373

-14,94

Peckia (Sarcodexia) sp1

61

10.68

59

6.12

97

14.12

25

7.44

40

10.90

282

8,60

Boettcheria sp1

11

1.93

7

0.73

8

1.16

2

0.60

5

1.36

33

-0,11

Sarcophagidae sp1

16

2.80

1

0.10

10

1.46

0

 

3

0.82

30

-1,36

Phaonia trispila (Bigot, 1885)

1

0.18

13

1.35

15

2.18

16

4.76

7

1.91

52

6,24

Limnophora marginata Stein, 1904

43

7.53

333

34.54

336

48.91

158

47.02

210

57.22

1080

86,62

Fannidae sp1

64

11.21

413

42.84

60

8.73

14

4.17

17

4.63

568

-40,89

Scatophagidae sp1

51

8.93

10

1.04

24

3.49

8

2.38

10

2.72

103

-3,12

 

 

PAC—Parque Arqueológico Cochasquí | CMF-—Cochasquí montane forest | AFS—Agroecologycal farming system | PC—Polyculture | MC—Monoculture | SI—Synanthropic Index.

 

 

For figure & images - - click here

 

 

REFERENCES

 

Albuja, L., M. Ibarra, J. Urgiles & R. Barriga (1980). Estudio preliminar de los vertebrados ecuatorianos. 1ra ed. Quito, Ecuador. Departamento de Ciencias Biológicas. Escuela Politécnica Nacional, 131pp. Accessed online on 18 October 2019; https://bibdigital.epn.edu.ec/handle/15000/4798

Amat, E. (2009). Contribución al conocimiento de las Chrysomyinae y Toxotarsinae (Diptera: Calliphoridae) de Colombia. Revista Mexicana de Biodiversidad 80: 693–708. https://doi.org/10.22201/ib.20078706e.2009.003.166

Amat, E., M. Vélez & M. Wolff (2008). Clave ilustrada para la identificación de los géneros y las especies de califóridos (Diptera: Calliphoridae) de Colombia. Caldasia 30: 231–244.

Baumgartner, D. & B. Greenberg (1985). Distribution and Medical Ecology of the Blow Flies (Diptera: Calliphoridae) of Peru. Annals of the Entomological Society of America 78: 565–587. https://doi.org/10.1093/aesa/78.5.565

Benecke, M., J. Eberhard & R. Zweihoff (2004). Neglect of the elderly: forensic entomology cases and considerations. Forensic Science Internacional 146S: 195–199. https://doi.org/10.1016/j.forsciint.2004.09.061

Buenaventura, E., G. Camacho, A. García & M. Wolff (2009). Sarcophagidae (Diptera) de importancia forense en Colombia: claves taxonómicas, notas sobre su biología y distribución. Revista Colombiana de Entomología 35: 189–196.

Byrd, J.H. & J.L. Castner (2001). Forensic  Entomology: The  utility  of arthropods in legal investigations. 1st edition, Boca Raton, CRC Press, 418pp.

Carson, W. & S. Schnitzer (2008). Tropical Forest Community Ecology. Wiley-Blackwell, USA. 536pp.

Carvalho, C.J.B. (2002). Muscidae (Diptera) of the Neotropical Region: taxonomy. Editora Universidade Federal do Paraná, Curitiba. Brasil. 287pp.

Carvalho, C.J.B. & M.S. Couri (2002). Part I. Basal groups. pp. 17–132. In: Carvalho, C.J.B. de (Ed.), Muscidae (Diptera) of the Neotropical Region: Taxonomy. Editora Universidade Federal do Paraná, Curitiba.

Carvalho, C.J.B. & P. Mello (2008). Key to the adults of the most common forensic species of Diptera in South America Revista Brasileira de Entomología 52: 390–406. https://doi.org/10.1590/S0085-56262008000300012

Carvalho,  C.J.B.,  M.S. Couri, A.C. Pont, D. Pamplona & S.M. Lopes  (2005). A Catalogue of the Muscidae (Diptera) of the  Neotropical  Region. Zootaxa  860: 1–282. https://doi.org/10.11646/zootaxa.860.1.1

Carvalho, C.J.B., J. De Almeida & C. Jesús (1984). Dípteros sinantrópicos de Curitiba e arredores (Paraná, Brasil). I. Muscidae. Revista Brasileira de Entomología 28: 551–560.

Catts, E.P. & G.R. Mullen (2002). Myiasis (Muscoidea and Oestroidea), pp. 317–348. In: Mullen, G. & L. Durden. (eds.). Medical and Veterinary Entomology. Academic Press, San Diego, CA.

Couri, M. & C.J.B. Carvalho (2005). Diptera muscidae do estado do Rio de Janeiro (Brasil). Biota Neotropica 5: 205–222. https://doi.org/10.1590/S1676-06032005000300015

Colwell, R. (2019). EstimateS: Statistical estimation of species Richness and Shared Species from Sample. Version 9.1. Available in: https://viceroy.eeb.uconn.edu/estimates/EstimateSPages/AboutEstimateS.htm

Coelho, S. (2000). Phaonia Robineau-Desvoidy (Diptera, Muscidae, Phaoniinae): II: revisão das espécies. Revista Brasileira de Zoologia 17: 795–875. https://doi.org/10.1590/S0101-81752000000300023

Dear, J. (1985). A revision of the New World Chrysomyini (Diptera: Calliphoridae). Revista Brasileira de Zoologia 3: 109–169. https://doi.org/10.1590/S0101-81751985000300001

D’Almeida, J. & J. Almeida (1998). Nichos tróficos en dípteros caliptrados, no Rio de Janeiro, RJ. Revista Brasileira de Biologia 54: 563–570. https://doi.org/10.1590/S0034-71081998000400004

Figueroa, L. & A. Linhares (2002). Sinantropía de los Calliphoridae (Diptera) de Valdívia, Chile. Neotropical Entomology 31: 233–239. https://doi.org/10.1590/S1519-566X2002000200009

Guimarães, J.H. (1977). Host-parasite and parasite-host catalogue of South American Tachinidae (Diptera). Arquivos de Zoologia 28: 1–131.

Hammer, O., D. Harper & P. Ryan (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4: 9.

Hernández, V. & J. Dzul (2008). Moscas (Insecta: Diptera), pp: 95–105. In: Manson, R., V. Hernández, S. Gallina & K. Mehltreter. Agroecosistemas cafetaleros de Veracruz: biodiversidad, manejo y conservación. Instituto de Ecología A.C. (INECOL) e Instituto Nacional de Ecología (INE-SEMARNAT), México.

Heip, C., P. Herman & K. Soetaert (1998). Indices of diversity and evenness. Océanis 24: 61–87.

Hill, M. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427–432.

Kimberly, L., R. Fell & C. Brewster (2005). Insect fauna visiting carrion in Southwest Virginia. Forensic Science International 150: 73–80. https://doi.org/10.1016/j.forsciint.2004.06.041

Kosmann, C., R. Pinto de Mello, E. Sevilha & R. Pujol-Luz (2013). A list of current valid blow fly names (Diptera: Calliphoridae) in the Americas South of Mexico with key to the Brazilian species. Entomo Brasilis 6: 74–85. https://doi.org/10.12741/ebrasilis.v6i1.266

Lambkin, C., T. Pape, B.J. Sinclair, G.W. Courtney, J.H. Skevington, R. Meier, D.K. Yeates, V. Blagoderov & B.M. Wiegmann (2013). The phylogenetic relationships among infraorders and superfamilies of Diptera based on morphological evidence. Systematic Entomology 38: 164–179. https://doi.org/10.1111/j.1365-3113.2012.00652.x

Löwenberg-Neto, P. & C.J.B. Carvalho (2013). Muscidae (Insecta: Diptera) of Latin America and the Caribbean: geographic distribution and check-list by country. Zootaxa 3650: 001–147. https://doi.org/10.11646/zootaxa.3650.1.1

Magaña, C., Andara, C., Contreras, M., Coronado, A., Guerrero, E., Hernández, D., Herrera, M., Jiménez, M., Liendo, C., Limongi, J., Liria, J., Mavárez, M., Oviedo, M., Piñango, J., Rodríguez, I., Soto, A., Sandoval, M., Sánchez, J., Seijas, N., Tiape, Z. & Y. Velásquez. (2006). Estudio preliminar de la fauna de insectos asociada a cadáveres en Maracay, Venezuela. Entomotropica 21: 53–59.

Marshall, S., T. Whitworth & L. Roscoe (2011). Blow flies (Diptera: Calliphoridae) of eastern Canada with a key to Calliphoridae subfamilies and genera of eastern North America, and a key to the eastern Canadian species of Calliphorinae, Luciliinae and Chrysomyiinae. Canadian Journal of Arthropod Identification 1–93. https://doi.org/10.3752/cjai.2011.11

McKinney, M. (2002). Urbanization, Biodiversity and Conservation. BioScience 52: 883–890. https://doi.org/10.1641/0006-3568(2002)052[0883:UBAC]2.0.CO;2

McKinney, M. (2008). Effects of urbanization on species richness: A review of plants and animals. Urban Ecosystems 11: 161–176. https://doi.org/10.1007/s11252-007-0045-4

Mc Alpine, J., B. Peterson, G. Shewell, H. Teskey & D. Wood (1981). Manual of Nearctic-Diptera Volume I. Biosystematics Research Institute. Ottawa. Ontario. Research Branch. Agriculture Canada. Monograph No. 27. 121: 90–104.

Moreno, A., J. Moreno, M. Vasquez & J. Liria (2016). New records of blowflies (Diptera: Calliphoridae) from Amazonian Venezuela. Advances in Environmental Biology 10: 1–7.

Moreno, C.E. (2001). Métodos para medir la biodiversidad. M&T, Manuales y Tesis SEA 1: 84pp.

Morón, M. & R. Terrón (1984). Distribución estacional y altitudinal de los insectos necrofilos de la sierra norte de Hidalgo, Mexico. Acta Zoológica Mexicana 3: 1–47.

Mulieri, P., L. Patitucci, J. Schnack & J. Mariluis (2011). Diversity and seasonal dynamics of an assemblage of sarcophagid Diptera in a gradient of urbanization, Journal of Insect Science 11(1): 1–15.  https://doi.org/10.1673/031.011.9101

Nuorteva, P. (1963). Synanthropy of blowflies (Diptera: Calliphoridae) in Finland. Annales Entomologicae Fennicae 29: 1–49. https://doi.org/10.1093/aesa/49.1.29

Pape, T., M. Wolff & E. Amat (2004). Los califóridos, éstridos, rinofóridos y sarcofágidos (Diptera: Calliphoridae, Oestridae, Rhinophoridae y Sarcophagidae) de Colombia. Biota Colombiana 5: 201–208.

Pérez, S. & M. Wolff (2011). Muscidae (Insecta, Diptera): Importancia y diversidad para Colombia. Boletin del Museo Entomológico Francisco Luís Gallego 3: 13–22.

Patitucci, L., P. Mulieri, M. Olea & J. Mariluis (2013a). Muscidae (Insecta: Diptera) of Argentina: revision of Buenos Aires province fauna, with a pictorial key to species. Zootaxa 3702: 301–347. https://doi.org/10.11646/zootaxa.3702.4.1

Patitucci, L., P. Mulieri, M. Olea, J. Schnack & J. Mariluis (2013b). Assemblages of saprophagous muscids (Diptera: Muscidae) in three urban sites of temperate Argentina. Revista Colombiana de Entomología 39: 291–300.

PDOT (2015). Plan de Ordenamiento y Desarrollo Cantonal, Actualización 2015–2025. Available online 18 October 2019. https://docplayer.es/31843475-Plan-de-ordenamiento-y-desarrollo-cantonal-actualizacion.html

Pinilla, Y., N. Segura & F. Bello (2012). Synanthropy of Calliphoridae and Sarcophagidae (Diptera) in Bogotá, Colombia. Neotropical Entomology 41: 237–242. https://doi.org/10.1007/s13744-012-0036-x

Polvoný, D. (1971). Synanthropy, p. 17–54. In: Greenberg, B. Flies and Disease: Ecology, classification, and biotic associations. Vol. 1. New Jersey, Princeton University Press.

Proctor, M., P. Yeo & A. Lack (1996). The Natural History of Pollination. Timber Press, Portland.

Quintero, E., A. Benavides, N. Moreno & S. González (2017). Bosques Andinos, estado actual y retos para su conservación en Antioquia. Medellín, Colombia: Fundación Jardín Botánico de Medellín Joaquín Antonio Uribe Programa Bosques Andinos (COSUDE). 1 Ed – Medellín, 2018. 542pp. 

Salazar, F. & D.A. Donoso (2015). Catálogo de insectos con valor forense en el Ecuador. Revista Ecuatoriana de Medicina y Ciencias Biológicas 36: 49–59.

Schnack, J., J. Marilus, J. Muzon & G. Spinelli (1989). Synanthropy of Calliphoridae. A first approach in Argentina (Insecta, Diptera). EOS 65: 271–280.

Souza, C.R., & C.J.V. Zuben (2012). Diversity and Synanthropy of Calliphoridae (Diptera) in the Region of Rio Claro, SP, Brazil. Neotropical Entomology 41: 243–248. https://doi.org/10.1007/s13744-012-0037-9

Souza de Pereira, J., M. Esposito, F. Carvalho & L. Juen (2014). The Potential Uses of Sarcosaprophagous Flesh Flies and Blowflies for the Evaluation of the Regeneration and Conservation of Forest Clearings: A Case Study in the Amazon Forest. Journal of Insect Science 14: 215. https://doi.org/10.1093/jisesa/ieu077

Ssymank, A., C. Kearns, T. Pape & F. Thompson (2008). Pollinating Flies (Diptera): A major contribution to plant diversity and agricultural production. Biodiversity 9: 86–89. https://doi.org/10.1080/14888386.2008.9712892

Stireman, J. (2007). Preliminary notes on Tachinidae reared from Lepidoptera in the Ecuadorian Andes. The Tachinid Times 20: 4–8.

Stireman, J., J. O’Hara & D. Wood. (2006). Tachinidae: Evolution, Behavior, and Ecology. Annual Review of Entomology 51: 525–55. https://doi.org/10.1146/annurev.ento.51.110104.151133

Toma, R. (2012). Tachinidae: una discusión sobre el problema de la identificación de los taxones de la Región Neotropical. Entomotropica 27: 145–152.

Torres, A. (2016). Diversidad de moscas de la familia Calliphoridae (Diptera, Oestroidea) en tres ambientes con diferentes grados de antropización en siete localidades adyacentes a la ciudad de Quito, Pichincha. Trabajo de Grado presentado como requisito parcial para optar al Título Licenciado en Biología. Facultad de Biología. Universidad Pontificia Universidad Católica del Ecuador. Quito, Ecuador.

Toro, M. (2007). Contribución al conocimiento de géneros pertenecientes a la antigua Tribu Dejeaniini (Diptera: Tachinidae) en Los Andes Ecuatorianos. Trabajo de Grado presentado como requisito parcial para optar al Título Licenciado en Biología. Facultad de Ciencias Naturales. Universidad de Guayaquil. Guayaquil, Ecuador.

Uribe-M.N., M. Wolff & C.J.B. Carvalho (2010). Synanthropy and ecological aspects of Muscidae (Diptera) in a tropical dry forest ecosystem in Colombia. Revista Brasileira de Entomologia 54: 462–470. https://doi.org/10.1590/S0085-56262010000300018

Vairo, K., C. Mello-Patiu & C.J.B. Carvalho (2011). Pictorial identification key for species of Sarcophagidae (Diptera) of potential forensic importance in southern Brazil. Revista Brasileira de Entomologia 55: 333–347. https://doi.org/10.1590/S0085-56262011005000033

Vianna, E., J. Brum, P. Ribeiro, M. Berne & J. Silveira (1998). Synanthropy of Calliphoridae (Diptera) in Pelotas, Rio Grande do Sul State, Brazil. Revista Brasileira de Parasitologia Veterinária 7: 141–147.

Whitworth, T.L. (2014). A revision of the Neotropical species of Lucilia Robineau-Desvoidy (Diptera: Calliphoridae). Zootaxa 3810: 1–76. https://doi.org/10.11646/zootaxa.3810.1.1

Whitworth, T. & K. Rognes. (2012). Identification of Neotropical blow flies of the genus Calliphora Robineau-Desvoidy (Diptera: Calliphoridae) with the description of a new species. Zootaxa 3209: 1–27. https://doi.org/10.11646/zootaxa.3209.1.1

Wiegmann, B.M., M.D. Trautwein, I.S. Winkler, N.B. Barr, J.W. Kin, C. Lambkin, M.A. Bertone, B. Cassel, K.M. Bayless, A.M. Heimberg, B.M. Wheeler, K.J. Peterson, T. Pape, B.J. Sinclair, J.H. Skevington, V. Blagoderov, J. Caravas, S.N. Kutty, U. Schmidt-Ott, G.E. Kampmeier, F.C. Thompson, D.A. Grimaldi, A.T. Beckenbach, G.W. Courtney, M. Friedrich, R. Meier & D.K. Yeates (2011). Episodic radiations in the fly tree of life. Proceedings of the National Academy of Sciences 108: 5690–5695. https://doi.org/10.1073/pnas.1012675108

 Yepes-Gaurisas, D., J.D. Sánchez-Rodríguez, C. Mello-Patiu & M. Wolff (2013). Synanthropy of Sarcophagidae (Diptera) in La Pintada, Antioquia-Colombia. Revista de Biología Tropical 61: 1275–1287.