SHORT COMMUNICATION

A PRELIMINARY SURVEY OF SOIL NEMAFAUNA OF BHAGWAN MAHAVEER WILDLIFE SANCTUARY, GOA, INDIA

Kiran Gaude & I.K. Pai

26 May 2020 | Vol. 12 | No. 8 | Pages: 15932–15935
DOI: 10.11609/jott.4825.12.8.15932-15935
A preliminary survey of soil nemafauna of Bhagwan Mahaveer Wildlife Sanctuary, Goa, India

Kiran Gaude1 (kiran.gaude@gmail.com) & I.K. Pai2 (ikpai@unigoa.ac.in)

1 & 2 Department of Zoology, Goa University, Taleigão, Goa 403206, India.

Abstract: Nematological research in India is primarily focussed on major crops and animal parasitic groups, while ignoring free living groups in forest ecosystems. In the present study, soil nemafauna of Bhagwan Mahaveer Wildlife Sanctuary, Goa, India was assessed. A total of 18 genera, 14 families, and five orders were recorded. Among four orders, Dorylaimida was the most dominant one, which consists of 12 genera and nine families. Among the 18 genera Sicaguttur, Qudsinema, Microdorylaimus, Longidorrella, Paralongidorus, Xiphidoriae, Fusccheila and Chrysonema are reported for the first time from the state. More such intensive survey will add more numbers of nematode species.

Keywords: Invertebrate, Nematoda, protected area, underground biota.

Nematodes are one of the important groups of invertebrate in both terrestrial and freshwater ecosystems (Hanel 1999). They are small, worm-like animals (Yeast 1979; Yeast & Bonger 1999), diverse (Ettema 1998), and ubiquitous inhabitants (Bernard 1992; Bloemers et al. 1997; Bonger & Ferris 1999) in nature. A total of 1,000,000 species of nematodes is estimated globally (Hugot et al. 2001); nearly 30,028 species are known. Around 2,900 species of nematodes are identified from India (MoEF 2014) which is 9.66% of the total described species. Nematological research in India predominantly focuses on plant and animal parasitic groups. The parasitic association of nematodes with all the major crops of India has been reported in earlier literature. Little work has been done on the free living groups in forest ecosystems as they do not have a direct connection with agriculture or livestock (Pradhan & Dash 1987; Baniyamuddin et al. 2007; Vaid et al. 2014).

Goa, a small state with an area of 3,702 km², in the Western Ghats and on the coast of the Arabian Sea, contributes a rich biodiversity (Alvares 2002). Extensive faunal studies, in general, have been done in Goa but the underground biota (Nematoda) has been neglected in most cases. In South Goa District, 52 species of nematodes are reported which is about 0.01% of total species in India (Lizanne & Pai 2014). These sanctuaries are part of the Western Ghats and may incorporate a wide diversity of soil nematodes.

STUDY AREA
Bhagwan Mahaveer Wildlife Sanctuary (Image 1) is a 240 km² protected area located at 15.319° & 74.288°. It contains several temples and the Dudhsagar Fall. This sanctuary is famous for its snakes particularly the King Cobra. Vegetation is classified as west coast tropical evergreen forests, west coast semi-evergreen forests, and moist deciduous forests (Alvares 2002).
predominant species are *Terminalia*, *Lagerstroemia*, *Xylo*, *Strobilanthus*, and *Dalbergia*. The forest canopy is almost closed, pH of soil samples from Bhagwan Mahaveer Sanctuary is slightly acidic (pH 6.12) and has high deposits of Phosphorous (88.5 Kg/Ha) and macronutrient viz., Iron (29.908 ppm), Zinc (4.1002 ppm), Copper (5.584 ppm) and Manganese (29.984 ppm) (Soil Testing Laboratory, Ela, Old Goa).

Materials and Methods

Soil collection and processing for nematode extraction and identification was as per Lizanne & Pai (2014) and Vaid et al. (2014). Ten soil samples were collected randomly in a self-sealing plastic bag. Each soil sample comprises 20 sub-samples. These sub-samples were combined to make one composite sample. The soil samples were processed using modified Cobb’s sieving and decantation and modified Baermann’s funnel techniques for the extraction of nematodes (Ravichandra 2015). A small amount of water suspension from a funnel was drawn into a cavity block through a rubber tubing. The nematodes thus isolated were collected for counting, fixing, and processed for making permanent slides. For counting nematodes, water was added to the extracted nematode suspension to make its volume 25ml. The suspension was stirred thoroughly and then 5ml volume was sucked by a pipette to pour in a Syracuse dish. Counting was done thrice for each sample and finally the mean was calculated. Individuals belonging to a genus were counted separately. Counted nematodes were then killed and fixed in 4% formalin and dehydrated in glycerine-alcohol (Seinhorst 1959). Dehydrated nematodes were mounted in anhydrous glycerine. Permanent slides of the specimens were prepared using paraffin wax ring method and were studied under Olympus BX51 microscope. The identification of nematodes was done consulting relevant literature (Jairajpuri & Ahmad 1992; Lamberti et al. 2002; NEMAPLEX, Nema Species Masterlist).

Results and Discussion

A total of 18 genera, 14 families and five orders of nematodes were reported from Bhagwan Mahaveer Wildlife Sanctuary (Table 1) (provide photographs/images if available for publication). Among four orders Dorylaimida is the most dominant order (Figure 1) consisting of 13 genera and 10 families followed by Mononchida consisting of two genera and one family. Dominance of order Dorylaimida is due to fewer disturbances in this region. Dorylaims are found in every
Soil nemafauna of Bhagwan Mahaveer WS Gaude & Pai

15934

conceived type of habitat and usually dominate both in numbers and in species over all other soil-inhabiting nematodes (Jairajpuri & Ahmad 1992). Dorylaimids and mononchids are more sensitive to disturbance (Forge & Simard 2001), therefore, they are used as indicators of environmental disturbances (Thomas 1978; Sohlenius & Wasilewska 1984). All these 18 genera are reported for the first time from this protected area. Genus Dorylaimus Dujardin was the most dominant among all (Figure 2) followed by Xiphinema Cobb, Tylenchus Bastian, Longidorus Micoletzky, and Longidorella Thorne. Genera like Sicaguttur Siddiqi, Qudsinema Jairajpuri, Microdorylaimus Andrassy, Longidorus Thorne, Paralongidorus Siddiqi, Fuscheila Siddiqi, and Chrysonema Thorne are reported for the first time from the state. Lizanne & Pai (2014) reported 69 species belonging to 48 genera. The addition of these eight genera will take the tally to 56 genera for the state of Goa. On assigning 18 genera to the trophic grouping using secondary data collected (Neher & Weight 2013; Vaid et al. 2014), trophic groups reported were plant parasites, predators, and omnivores (Table 1). Plant parasites were the most dominant (five genera) followed by predators (four genera), omnivore (three genera), and bacterivores (two genera). In terms of number, omnivores dominated the area (Figure 3) followed by predators. According to Vaid et al. (2014), the abundance of predators is uncommon in forest ecosystems and is clearly due to the absence of anthropogenic activities.

Conclusion

This is a preliminary study on this forest, more such intensive survey in the sanctuary will yield more species of nematodes.

Table 1. Soil nematode genera from Bhagwan Mahaveer Wildlife Sanctuary.

<table>
<thead>
<tr>
<th>Orders</th>
<th>Families</th>
<th>Genera</th>
<th>Feeding type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorylaimida</td>
<td>Swangeriniae</td>
<td>Oxydirus Thorne, 1939</td>
<td>Plant parasite</td>
</tr>
<tr>
<td></td>
<td>Dorylaimidae</td>
<td>Dorylaimus Dujardin, 1845</td>
<td>Omnivore</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sicaguttur Siddiqi, 1971</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quadianematidae</td>
<td>Qudsinema Jairajpuri, 1965</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Microdorylaimus Andrassy, 1986</td>
<td>Omnivore</td>
</tr>
<tr>
<td>Nordiida</td>
<td>Longidorella Thorne, 1939</td>
<td>Omnivore</td>
<td></td>
</tr>
<tr>
<td>Aporcelaimida</td>
<td>Aporcelaimium Loof &</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Goemans, 1970</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actinolaimida</td>
<td>Hexactinolaimus Yeates, 1973</td>
<td>Predator</td>
<td></td>
</tr>
<tr>
<td>Longidorida</td>
<td>Longidorus Micoletzky, 1922</td>
<td>Plant parasite</td>
<td></td>
</tr>
<tr>
<td>Xiphinematida</td>
<td>Xiphinema, Cobb, 1913</td>
<td>Plant parasite</td>
<td></td>
</tr>
<tr>
<td>Thorneematida</td>
<td>Fuscheila Siddiqi, 1982</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Crateronematida</td>
<td>Chrysonema Thorne, 1929</td>
<td>Not known</td>
<td></td>
</tr>
<tr>
<td>Tylenchida</td>
<td>Tylenchidae</td>
<td>Tylenchus Bastian, 1865</td>
<td>Plant parasite</td>
</tr>
<tr>
<td>Alaimida</td>
<td>Alaimida</td>
<td>Alaimus de Man, 1880</td>
<td>Bacterivore</td>
</tr>
<tr>
<td>Rhabditida</td>
<td>Rhabditidae</td>
<td>Mesorhabditis</td>
<td>Bacterivore</td>
</tr>
<tr>
<td>Mononchida</td>
<td>Monochidae</td>
<td>Clarkus Jairajpuri, 1970</td>
<td>Predator</td>
</tr>
<tr>
<td></td>
<td>Monochus Bastian, 1865</td>
<td>Predator</td>
<td></td>
</tr>
</tbody>
</table>

Figure 1. Dominance of orders of soil nematodes

Figure 2. Dominance of orders of soil nematodes

Figure 3. Dominance of orders of soil nematodes

Soil nematofauna of Bhagwan Mahaveer WS
Gaude & Pai

Figure 2. Genera-wise dominance of soil nematodes

Figure 3. Number of individuals of soil nematodes as per trophic groups

REFERENCES

