COMMUNICATION

COLLECTING PARASITIC ACULEATA (HYMENOPTERA) FROM RICE ECOSYSTEMS OF TAMIL NADU, INDIA

J. Alfred Daniel & K. Ramaraju

26 May 2020 | Vol. 12 | No. 8 | Pages: 15828–15834
DOI: 10.11609/jott.4724.12.8.15828-15834
Collecting parasitic Aculeata (Hymenoptera) from rice ecosystems of Tamil Nadu, India

J. Alfred Daniel 1 & K. Ramaraju 2

1,2 Department of Agricultural Entomology, Tamil Nadu Agricultural University, P.N. Pudur, Coimbatore, Tamil Nadu 641003, India.

danieljalfred@gmail.com (corresponding author), kramaraju60@gmail.com

Abstract: Surveys were conducted to explore the parasitic aculeate fauna in rice ecosystems of Tamil Nadu in 2015–2016 in three different rice growing zones, viz., the western zone, the Cauvery delta zone and the high rainfall zone. The study recorded a total of 32 aculeates that represent 12 species under seven families belonging to three super families, viz., Apoidea (Apidae), Chrysidoidea (Bethylidae, Chrysididae, & Dryinidae), and Vespioidea (Mutillidae, Scoillidae, & Thiphiidae). Alpha and beta diversity were computed for the three zones and the diversity indices (Simpson's index, Shannon-Wiener index, Pielou's index) revealed the high rainfall zone as the most diverse zone, with the Cauvery delta zone being the least diverse. On comparing the species similarities using the Jaccard's index in between the three zones taken in pairs, it was found that 42 per cent similarity existed between the western and Cauvery delta zone and 11 per cent similarity between high rainfall and Cauvery delta zones and 16 per cent similarity between the high rainfall and western zones.

Keywords: Apidae, Bethylidae, Chrysididae, diversity, Dryinidae, indices, Mutillidae, Scoillidae, Thiphiidae.
INTRODUCTION

Rice fields have unique characteristics that make them ideal grounds for diverse biological organisms. In addition, the different growth stages of the rice plant from seedling to harvest create micro-climatic conditions, offering a variety of habitats and niches conducive to a variety of life forms (Edirisingshe & Bambaradeniya 2010). Thus, it is an ecosystem which sustains not only the people whose staple diet is rice but also a diverse assemblage of plants and animals that have made rice fields their niche. But indiscriminate use of insecticides in rice fields has resulted in the loss of biodiversity of beneficial organisms like hymenopteran insects (Dudley et al. 2005).

Reducing the mortality of hymenopterans caused by insecticides is essential for greater sustainability in rice pest management (Heong & Hardy 2009; Gurr et al. 2011). They show greater stability to the ecosystem than any group of natural enemies of insect pests because they are capable of living and interacting at a lower host population level. A typical phytophagous insect is host to about five species of Hymenoptera (Hawkins 1993). Destroying one parasitoid species, therefore, may have unpredictable and immeasurable effects on the abundance of a number of phytophagous insects (LaSalle 2003). These studies suggest how important hymenopterans are in their natural habitats.

Although the species composition of terrestrial insects in rice fields throughout the world is relatively well documented, only a few studies have examined the biodiversity of hymenopterans in rice fields (Heckman 1974, 1979). The studies regarding the ability of aculeate Hymenoptera to utilize wetlands is far from satisfying (Stapenkova et al. 2017). Aculeata is one of the largest groups of insects and a few of them are parasitoids attacking a wide range of insects in their various stages of development, thereby playing a pivotal role in ecological balance. The diversity of parasitic aculeates associated with rice ecosystem is poorly studied in Tamil Nadu State, viz.: western zone (District representation: Coimbatore at Paddy Breeding Station, Coimbatore, 427m, 11.007N, 76.937E), Cauvery delta zone (District representation: Thiruvarur at Krishi Vigyan Kendra, Needamangalam, 26m, 10.774N, 79.412E), and high rainfall zone (District representation: Kanyakumari at Agricultural Research Station, Thiruppathisaram, 17m, 8.207N, 77.445E). Collections were made for 20 consecutive days in each zone to give equal weightage and to minimize chances of variations in the collection. The time of sampling in each zone was decided based on the rice growing season of the zone and the stage of the crop, i.e., 20 days from August–September 2015 in the western zone, October–November 2015 in the high rainfall zone, and December 2015–January 2016, in the Cauvery delta zone.

MATERIALS AND METHODS

Sites of collection

The survey was carried out in the rice fields in 2015–2016 in three different agroclimatic zones of Tamil Nadu State, viz.: western zone (District representation: Coimbatore at Paddy Breeding Station, Coimbatore, 427m, 11.007N, 76.937E), Cauvery delta zone (District representation: Thiruvarur at Krishi Vigyan Kendra, Needamangalam, 26m, 10.774N, 79.412E), and high rainfall zone (District representation: Kanyakumari at Agricultural Research Station, Thiruppathisaram, 17m, 8.207N, 77.445E). Collections were made for 20 consecutive days in each zone to give equal weightage and to minimize chances of variations in the collection. The time of sampling in each zone was decided based on the rice growing season of the zone and the stage of the crop, i.e., 20 days from August–September 2015 in the western zone, October–November 2015 in the high rainfall zone, and December 2015–January 2016, in the Cauvery delta zone.

Measurement of diversity

Relative density (calculated by the formula, Relative Density (%) = (Number of individuals of one species / Number of individuals of all species) X 100, alpha diversity, viz., Simpson’s index (Simpson 1949), (SDI) is calculated using the formula \[D = \frac{\sum n (n-1)}{N(N-1)} \] where \(n \) = total number of organisms of a particular species and \(N \) = total number of organisms of all species. Subtracting the value of Simpson’s index from 1, gives Simpson’s Index of Diversity (SID). The value of the index ranges from 0 to 1, the greater the value the greater the sample diversity. Shannon-index (Shannon, 1948), Margalef
richness index (Margalef 1958), Pielou’s evenness index (Pielou 1966; Magurran 1988), and beta diversity using Jaccard index (Jaccard 1912) were calculated using the online software Biodiversity Calculator (https://www.alyoung.com/labs/biodiversity_calculator.html).

Statistical analysis

The statistical test ANOVA was also used to check whether there was any significant difference in the collections from three zones. The data on population number were transformed into X+0.5 square root before statistical analysis. The mean individuals caught from three different zones were analyzed by adopting randomized block design (RBD) to find least significant difference (LSD). Critical difference (CD) values were calculated at five per cent probability level. All these statistical analyses were done using Microsoft Excel 2016 version and Agres software version 3.01.

RESULTS AND DISCUSSION

Parasitic Aculeata

In the present study, a total of 32 aculeates were collected from rice ecosystems that represent 12 species under seven families (Images 1–12), viz., Apidae, Bethylidae, Chrysididae, Dryinidae, Mulinidae, Scoliidae, and Taphiidae.

Parasitic aculeate faunal surveys of rice ecosystems in western Cauvery delta and high rainfall zones of Tamil Nadu revealed that the species richness was maximum (7) in both western and high rainfall zones. Abundance wise, the high rainfall zone stood first with a total collection of 14 individuals. The western zone ranks second with a total collection of nine individuals and Cauvery delta region represented the least abundant with a total collection of seven individuals.

The Simpson’s index of diversity is highest for high rainfall zone (0.91) and lowest for western zone (0.87) (Table 2), revealing more diversity in high rainfall zone than the western zone. A similar trend was observed for the Shannon index also. From the values of Margalef richness index for the three zones, it was found that the high rainfall zone was very rich in species with a richness value of 3.03 followed by western zone (2.08), while for Cauvery delta zone the value is 2.05. The Pielou’s evenness value for the sites clearly indicated that the evenness patterns of all the three zones were almost the same with evenness index value 0.41 for Cauvery delta zone, followed by western zone (0.40) and high rainfall zone (0.40) (Table 2). The species composition among elevational zones can indicate how community structure changes with biotic and abiotic environmental pressures (Shmida & Wilson 1985; Condit et al. 2002). Studies on the effect of elevation on species diversity of taxa such as spiders (Sebastian et al. 2005), moths (Azmacher & Fiedler 2008), paper wasps (Kumar et al. 2008), and ants (Smith et al. 2014) reported that species diversity decreased with an increase in altitude, however, according to Janzen (1976), diversity of parasitic Hymenoptera is not as proportionately reduced by elevation as in other insect groups, a fact that is in support of our results.

A similar study conducted by Shweta & Rajmohana (2016) to assess the diversity of members belonging to the subfamily Scelioninae also declared that the elevation did not have any major effect on the overall diversity patterns. Daniel et al. (2017) obtained similar results by conducting experiments to assess the diversity of pteromalids of rice ecosystems in Tamil Nadu. The elevation dealt with in that work ranged from 17–427 m which was not very high. So taking into account the scale and extent of elevational gradients, it can be said that species diversity and richness have not showed any correlation, i.e., species diversity and richness were not proportional with that of elevation.

On comparing the species similarities using the Jaccard’s index in between the three sites taken in pairs, it is found that 42 percent similarity between western zone and Cauvery delta zone and 11 per cent similarity between high rainfall zone and Cauvery delta zone. The similarity between western zone and high rainfall zone is 16 per cent. All the parasitic aculeates that were collected along with their host details were presented in Table 3.

Apidae

Under the family Apidae, only one species, *Thyreus ceylonicus* (Friese) was collected only from the western zone. Since, only one species was caught, diversity indices cannot be calculated.

The bee genus *Thyreus* Panzer is kleptoparasitic on species of *Amegilla* Friese possibly on *Anthophora* Latreille and *Eucera* Scopoli (Stoeckhert 1954). Matsumura et al. (2004) have collected a few kleptoparasitic cuckoo bees from the rice fields of Japan.

Bethylidae

Two species of bethylids, viz., *Goniozus indicus* (Ashmead) and *Holepyris hawaiiensis* were collected in the present study. Though *G. indicus* was found to be common to all the three zones, *H. hawaiiensis* was
Images 1–12. Twelve species of parasitic Aculeata collected from three rice growing zones of Tamil Nadu. 1—Thyreus ceylonicus (Friese) | 2—Goniozus indicus (Ashmead) | 3—Holepyris hawaiiensis (Ashmead) | 4—Stilbum cyanarum (Forster) | 6—Dryinus sp. | 6—Gonatopus sp. | 7—Haplogonatopus sp. | 8—Storozhenkotilla sp. | 9—Zavatilla sp. | 10—Campsomeriella collaris Betrem | 11—Scolia affinis Guerin | 12—Mesa sp. © Alfred Daniel, J.
found only in the western zone. Among the three zones, high rainfall zone (7) was found to have more number of bethylids followed by western zone (4) and Cauvery delta zone (2) (Table 1). A total of 13 numbers of bethylid individuals were collected from all the three zones.

A mean of 0.20 ± 0.12 bethylids were collected per day from western zone. Cauvery delta zone and high rainfall zone yielded 0.10 ± 0.07 and 0.35 ± 0.15 bethylids per day, respectively.

Chrysididae

Under the family Chrysididae, only one species, *Stilbum cyanarum* (Forster) was collected in the present study. Since only one species was caught, diversity indices could not be calculated.

Dryinidae

In the present study, a total of eight dryinid individuals comprising three different species, viz., *Dryinus* sp., *Gonatopus* sp. and *Haplogonatopus* sp. were collected. *Dryinus* sp. and *Gonatopus* sp. were common to both western zone and Cauvery delta zone, but *Haplogonatopus* sp. was obtained only from the high rainfall zone. It was found that the Cauvery delta zone was the most dryinid abundant zone with a total collection of five numbers followed by western zone (2) and high rainfall zone represented by only one individual.

Mutiliidae

Two species, *Storozhenkotilla* sp. and *Zavatilla* sp., were collected under the family Mutiliidae. Both the species were collected from the high rainfall zone alone. A total of three mutilid individuals were collected in the present study (Table 1).

High rainfall zone recorded a mean of 0.15 ± 0.11 individuals per day. Since, mutilids were collected only from high rainfall zone no comparison between zones were made. Heong et al. (1991), Bambaradeniya et al. (2004), and Samin et al. (2011) have recorded mutilids from the rice fields of Philippines, Sri Lanka, and Iran, respectively.

Scoliidae

Two species, *Campsomeriella collaris* Betrem and *Scolia affinis* Guerin, were collected in the current study. Though *C. collaris* was obtained both from the western and high rainfall zones, *S. affinis* was obtained only from high rainfall zone. No scoliids was caught from Cauvery delta zone.

Table 1. Comparison of parasitic Aculeata collected from three rice growing zones of Tamil Nadu.

<table>
<thead>
<tr>
<th>Species</th>
<th>Zones</th>
<th>Western</th>
<th>Cauvery Delta</th>
<th>High Rainfall</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No.</td>
<td>%</td>
<td>No.</td>
<td>%</td>
<td>No.</td>
</tr>
<tr>
<td>Apidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thyreus ceylonicus</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>Apidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goniozus indicus</td>
<td>3</td>
<td>75</td>
<td>2</td>
<td>100</td>
<td>7</td>
</tr>
<tr>
<td>Bethylidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holepyris hawaiiensis</td>
<td>1</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Chrysididae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stilbum cyanarum</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Dryinidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dryinus sp.</td>
<td>1</td>
<td>100</td>
<td>1</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>Gonatopus sp.</td>
<td>1</td>
<td>50</td>
<td>2</td>
<td>40.0</td>
<td>0</td>
</tr>
<tr>
<td>Haplogonatopus sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mutiliidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storozhenkotilla sp.</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Zavatilla sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Scoliidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campsomeriella collaris</td>
<td>1</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Scolia affinis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Tiphidiidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meso sp.</td>
<td>3</td>
<td>100</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Total collected</td>
<td>11</td>
<td>-</td>
<td>07</td>
<td>-</td>
<td>14</td>
</tr>
<tr>
<td>Number of species</td>
<td>07</td>
<td>-</td>
<td>03</td>
<td>-</td>
<td>07</td>
</tr>
</tbody>
</table>

%: Relative Density, No.: Total number of individuals collected, F-Value, P-Value
Table 2. Diversity indices of parasitic Aculeata from three rice growing zones of Tamil Nadu.

<table>
<thead>
<tr>
<th>Zones</th>
<th>Mean number of all aculeates collected/day</th>
<th>SE</th>
<th>SID</th>
<th>H'</th>
<th>a</th>
<th>E_1</th>
<th>$b%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western</td>
<td>0.55 (0.94)</td>
<td>± 0.22</td>
<td>0.87</td>
<td>0.72</td>
<td>2.08</td>
<td>0.40</td>
<td>W and C – 42</td>
</tr>
<tr>
<td>Cauvery Delta</td>
<td>0.35 (0.87)</td>
<td>± 0.15</td>
<td>0.90</td>
<td>0.67</td>
<td>2.05</td>
<td>0.41</td>
<td>C and H - 11</td>
</tr>
<tr>
<td>High Rainfall</td>
<td>0.70 (1.02)</td>
<td>± 0.23</td>
<td>0.91</td>
<td>0.88</td>
<td>3.03</td>
<td>0.40</td>
<td>H and W - 16</td>
</tr>
<tr>
<td>S.ED</td>
<td>0.10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>CD (p=0.05)</td>
<td>0.20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Figures in parentheses are square root transformed values; in a column, means followed by a common letter(s) are not significantly different by LSD (p=0.05) | SID—Simpson’s Index of Diversity | H'—Shannon Index | a—Margalef index | E_1—Pielou’s index | b—Beta diversity (Jaccard Index) | W—Western Zone | C—Cauvery Delta Zone | H—High Rainfall Zone | S.ED—Standard Deviation | CD—Critical Difference | SE—Standard Error (same table third column).

Table 3. Parasitic aculeates collected in the study along with their host.

<table>
<thead>
<tr>
<th>Parasitoid</th>
<th>Host</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyreus ceylonicus</td>
<td>Amegilla sp. & Anthophora sp.</td>
<td>Liefstcin, 1962</td>
</tr>
<tr>
<td>Goniozus indicus</td>
<td>Cnaphalocrocis medinalis Scrpaphaga sp.</td>
<td>Gifford, 1965</td>
</tr>
<tr>
<td>Holoepyrus hawaiiensis</td>
<td>Corcyra cephalonica, & Plodia interpunctella</td>
<td>Amante et al. 2018</td>
</tr>
<tr>
<td>Stilbum cyanarum</td>
<td>Eumenidae, Sphecidae, & Megachilidae</td>
<td>Tormos et al. 2006</td>
</tr>
<tr>
<td>Dryinus sp.</td>
<td>Plant hoppers</td>
<td>Guglielmino et al. 2013</td>
</tr>
<tr>
<td>Gonatoptus sp.</td>
<td>Plant hoppers</td>
<td>Guglielmino et al. 2013</td>
</tr>
<tr>
<td>Haplogonatopus sp.</td>
<td>Plant hoppers</td>
<td>Guglielmino et al. 2013</td>
</tr>
<tr>
<td>Storozhenkotilla sp.</td>
<td>Coleoptera, Diptera, & Hymenoptera</td>
<td>Lelej et al. 2007</td>
</tr>
<tr>
<td>Zavattilla sp.</td>
<td>Coleoptera, Diptera, & Hymenoptera</td>
<td>Lelej et al. 2007</td>
</tr>
<tr>
<td>Campsomeriellia collaris</td>
<td>Scarabaeoidea</td>
<td>Vidyasagar & Bhat 1991</td>
</tr>
<tr>
<td>Scelia affinis</td>
<td>Scarabaeoidea</td>
<td>Vidyasagar & Bhat 1991</td>
</tr>
<tr>
<td>Mesa sp.</td>
<td>Scarabaeoidea</td>
<td>Vidyasagar & Bhat 1991</td>
</tr>
</tbody>
</table>

A mean of 0.05 ± 0.05 and 0.10 ± 0.10 scoliids were collected per day from western zone and high rainfall zone, respectively. Since only one species was recorded from western zone and no species were recorded from Cauvery delta zone, diversity indices could not be calculated for these two zones.

Tiphiiidae

Under the family Tiphiiidae, three individuals of *Mesa* sp. were collected from western zone. The other two zones have not accounted for Tiphiiidae. These are parasites of subterranean beetle larvae, especially of Scarabaeoidea and Tenebrionidae occurring in soil or rotten wood; some are found to parasitize mole crickets (Allen 1996). Heong et al. (1991), Bambaradeniya et al. (2004), and Fritz et al. (2011) have collected Tiphiiidae from rice ecosystem of Philippines and Sri Lanka.

CONCLUSION

This study reveals the diversity of parasitic Aculeata from three different rice ecosystems of Tamil Nadu, where the high rainfall zone is the most diverse and the Cauvery delta zone being the least. The reasons for the significant changes in diversity of aculeates and their host insects are to be further studied.

REFERENCES

Communications

Mammalian fauna in an urban influenced zone of Chandaka-Dampara Wildlife Sanctuary in Odisha, India
– Subrat Debata & Kedar Kumar Swain, Pp. 15767–15775

Species in peril: assessing the status of the trade in pangolins in Nepal
– Prayash Ghimire, Nirjala Raut, Pragyaa Khanal, Suman Acharya & Suraj Upadhaya, Pp. 15776–15783

Diversity and synanthropy of bats (Chiroptera) from Thane district of Maharashtra, India
– Elanster Gaikwad, Vimala Jadhav & Divyaa Vernekar, Pp. 15784–15793

Diversity of polypores in Kerala Agricultural University main campus, Kerala, India
– R. Kantharaja & M. Krishnappa, Pp. 15881–15888

Morphological and molecular phylogenetic studies on Jathropha curcas (Euphorbiaceae) from India

Short Communications

On the evidence of the Irrawaddy Dolphin Orcaella brevirostris (Owen, 1866) (Mammalia: Cetartiodactyla: Delphinidae) in the Hooghly River, West Bengal, India
– Gargi Roy Chowdhury, Kanad Roy, Namon Goyal, Ashwin Warudkar, Rashid Hasnain Raza & Qamar Qureshi, Pp. 15905–15908

Avifaunal diversity of Tilyar Lake, Rohtak, Haryana, India

Life-history traits and courtship behaviour of four poorly known endemic bush frogs (Amphibia: Anura: Rhacophoridae) from the Western Ghats of India
– A.V. Abhijith & Shomen Mukherjee, Pp. 15916–15921

A first record of Camacinia harterti Karsch, 1890 (Odonata: Libellulidae) from Arunachal Pradesh, India
– Arajush Payra, K.A. Subramanian, Kailash Chandra & Basudev Tripathy, Pp. 15922–15926

Occurrence of Fulgoarea (= Epirciania) melanoelleca (Lepidoptera: Epipyropidae) as a parasitoid of sugarcane lophopid planthopper Pyrrila perpusilla in Tamil Nadu (India) with brief notes on its life stages

A preliminary survey of soil nemafusa of Bhagwan Mahaveer Wildlife Sanctuary, Goa, India

Thirty-nine newly documented plant species of Great Nicobar, India

Notes

An observation of homosexual fellatio in the Indian Flying Fox Pteropus medius (Temminck, 1825) (Mammalia: Chiroptera: Pteropodidae)

Diurnal observation of a Malayan Krait Bungarus candidus (Reptilia: Elapidae) feeding inside a building in Thailand
– Cameron Wesley Hodges, Anji D’souza & Sira Jintapirom, Pp. 15947–15950

An additional record of the Tamdil Leaf-litter Frog Leptobrachella tamdil (Amphibia: Anura: Rhacophoridae) from the Western Ghats of India

Population ecology and genetic structure of the Tamdil Leaf-litter Frog Leptobrachella tamdil in India

Arajush Payra, K.A. Subramanian, Kailash Chandra & Basudev Tripathy, Pp. 15922–15926

Additional description of the Algae Hydrozoa Thysanophyllum ramosus (Hydrozoa: Leptothecata: Thyroscyphidae) from Palk Bay, India with insights into its ecology and genetic structure
– G. Ramesh, R. Raja & K. Kalesh Kumar, Pp. 15852–15863

Floristic composition and distribution pattern of herbaceous plant diversity in the Western Ghats of India

Morphological and molecular phylogenetic studies on Battarrea phalloides (Arecaceae), a new record to India
– A.V. Abhijith & Shomen Mukherjee, Pp. 15916–15921

An additional record of the Tamdil Leaf-litter Frog Leptobrachella tamdil (Amphibia: Anura: Rhacophoridae) from the Western Ghats of India

Life-history traits and courtship behaviour of four poorly known endemic bush frogs (Amphibia: Anura: Rhacophoridae) from the Western Ghats of India
– A.V. Abhijith & Shomen Mukherjee, Pp. 15916–15921

A first record of Camacinia harterti Karsch, 1890 (Odonata: Libellulidae) from Arunachal Pradesh, India
– Arajush Payra, K.A. Subramanian, Kailash Chandra & Basudev Tripathy, Pp. 15922–15926

Occurrence of Fulgoarea (= Epirciania) melanoelleca (Lepidoptera: Epipyropidae) as a parasitoid of sugarcane lophopid planthopper Pyrrila perpusilla in Tamil Nadu (India) with brief notes on its life stages

A preliminary survey of soil nemafusa of Bhagwan Mahaveer Wildlife Sanctuary, Goa, India

Thirty-nine newly documented plant species of Great Nicobar, India

Notes

An observation of homosexual fellatio in the Indian Flying Fox Pteropus medius (Temminck, 1825) (Mammalia: Chiroptera: Pteropodidae)

Diurnal observation of a Malayan Krait Bungarus candidus (Reptilia: Elapidae) feeding inside a building in Thailand
– Cameron Wesley Hodges, Anji D’souza & Sira Jintapirom, Pp. 15947–15950

An additional record of the Tamdil Leaf-litter Frog Leptobrachella tamdil (Amphibia: Anura: Rhacophoridae) from the Western Ghats of India

Population ecology and genetic structure of the Tamdil Leaf-litter Frog Leptobrachella tamdil in India

Arajush Payra, K.A. Subramanian, Kailash Chandra & Basudev Tripathy, Pp. 15922–15926