

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

Journal of Threatened Taxa

Building evidence for conservation globally

www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

COMMUNICATION

Phytodiversity of chasmophytic habitats at Olichuchattam Waterfalls, Kerala, India

Arun Christy & Binu Thomas

26 June 2020 | Vol. 12 | No. 9 | Pages: 16099–16109 DOI: 10.11609/jott.4554.12.9.16099-16109

For Focus, Scope, Aims, Policies, and Guidelines visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints, contact <ravi@threatenedtaxa.org>

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Publisher & Host

Member

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 June 2020 | 12(9): 16099–16109 ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) **OPEN ACCESS** DOI: https://doi.org/10.11609/jott.4554.12.9.16099-16109

#4554 | Received 10 December 2018 | Final received 25 May 2020 | Finally accepted 01 June 2020

Phytodiversity of chasmophytic habitats at Olichuchattam Waterfalls, Kerala, India

Arun Christy ¹ & Binu Thomas ²

^{1,2} Department of Botany, Centre for PG studies & Research, St. Joseph's College (Autonomus), Devagiri, Kozhikode, Kerala 673008, India. ¹arunchristysebastian03@gmail.com, ²binuthomasct@gmail.com (corresponding author)

Abstract: The present study was conducted to analyse the Phytodiversity of Chasmophytic habitats at Olichuchattam waterfalls, Kerala, India. The studies on the plants in such special type of habitats are very less. Hence the present study will help to know more about them. Field exploration and observations were made, plants were collected, identified and herbarium was prepared. Analysis of plants and soil samples from different regions of the study area based on altitudinal variations was also done. As a result of the study, a total of 120 plant species that belonging to 49 families and 93 genera were documented. Of these 5 species are bryophyte, 10 species are pteridophytes and 105 species are angiosperms. The ornamental potentiality of the plants in the study area was also analysed and it shows that a total of 47 species have ornamental potentialities. The present study also highlighted some threatening factors can affect the distribution of plants in the present study area. The present study highlights that, the rocky cliffs and crevices serves as an excellent habitat for many interesting plant groups. The plants in these habitats are very unique and are attractive. The rocky cliffs and crevices represents a good indicator of rich biodiversity within small areas.

Keywords: Floristic diversity, chasmophytes, Olichuchattam, invasive species, threats.

Editor: B. Ravi Prasad Rao, Sri Krishnadevaraya University, Ananthapuramu, India.

Date of publication: 26 June 2020 (online & print)

PLATINUM

6

Citation: Christy, A. & B. Thomas (2020). Phytodiversity of chasmophytic habitats at Olichuchattam Waterfalls, Kerala, India. Journal of Threatened Taxa 12(9): 16099-16109. https://doi.org/10.11609/jott.4554.12.9.16099-16109

Copyright: © Christy & Thomas 2020. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: None.

Competing interests: The authors declare no competing interests.

Author details: ARUN CHRISTY currently working as project fellow at Department of Botany, Maharaja's College, Ernakulam and dealing with the lichenological studies of Kerala. The present article is based on the results of taxonomic studies carried out by him during his post graduation studies in Department of Botany, St. Joseph's College (Autonomus). DR. BINU THOMAS currently working as Assistant professor in Department of Botany, St. Joseph's College (Autonomus). He has authored three books, seven book chapters in edited books and more than 100 articles in various national and international Journals. He also being an active reviewer in various reputed Journals. His areas of research interests are in angiosperm taxonomy and phytochemistry.

Author contribution: AC-conducted the field trip, collection, Identification and compilation of various datas on chasmophytic plants in the study area. BTplanned the outline of this research work and provided necessary guidelines for the research.

Acknowledgements: The authors are thankful to the Principal, St. Joseph's College, Devagiri, Kozhikode. We also acknowledged the faculty members and Research scholars of Department of Botany, St. Joseph's College, Devagiri for their support and valuable suggestions.

INTRODUCTION

Floristic diversity refers to the variety and variability of plants in a given region. It refers to the number of types or taxa in a given region or group. India is one of the 12 mega diversity centres of the world where the Western Ghats and the Himalayan region constitute two of the 34 biodiversity hotspots representing a storehouse of several promising economically important plants (Myers 1990). Species richness and endemism are, however, not uniformly distributed along the Western Ghats. The southernmost regions which have the most favourable climatic conditions with high, but not excessive rainfall and short dry season are the ones with the highest biodiversity and contain the highest number of endemic species (Pascal et al. 2004). Southern Western Ghats is one of the two mega endemic centres in Western Ghats (Nair & Daniel 1986; Nayar 1996). Kerala forms a major species-rich part of southern Western Ghats harbouring a total of 4,679 flowering plants (Sasidharan 2004).

The vegetation on the surface of rocks or stones are lithophytes, while the vegetation in the crevices of rocks are chasmophytes (Schimper 1898). Rock crevices form a major habitat for many plants and host rich biodiversity within a small area. The rocky habitat provides an extremely harsh physical environment for plants that leads to the development of specialized plant communities with endemic and habitat specific species. Microhabitats like rock crevices possess diverse forms of plants, which are mainly seasonal herbs. These habitats differ from each other due to changes in geographical terrain and soil cover (Porembski 2000).

Chasmophytes are plants rooted in clefts of rocks that are filled with detritus. In these clefts, particles of earth conveyed by wind and water accumulate. The amount and rate of accumulation depends upon the width and situation of the clefts (Davis 1982). The soil thus constituted facilitates plants to establish and their dead fragments further add to the supply of the nutritive material in the clefts (Bashan et al. 2002). Rocky cliffs are microhabitats which are slightly mineral rich and can support the growth and survival of many chasmophytic species. The occurrence of such habitats ultimately depends on a number of factors such as geographical location, levels of exposure, high evaporation rates, nature of soil geology, and water runoff during the rainy season (Danin et al. 1982). The chasmophytic species growing on rock crevices and cliffs have to deal with an extremely inhospitable environment. Therefore, they have developed several adjustments such as strong roots and reduced life form structure. This root system supports them on the cliffs and allows for maximum exploitation of the little water and nutrients contained in minimal soil. This habitat is also susceptible to strong winds and full sunlight, as there is no tall vegetation to protect it from these climatic factors (Binu & Rajendran 2012).

The growth of chasmophytic plants mainly depends on the availability of water and depth of soil with nutrients. The number of plants is more during the wet season than during the dry season. The rocky cliffs and crevices represent a good indicator of rich biodiversity within small areas (Binu et al. 2012). The pioneering plants such as lichens, mosses, ferns & fern allies, small herbs, and grasses grow in the weathered soil in the rock crevices and loosen the weathered particles of rocks and add an organic material to the developing soil. These plants trap water and wind-blown soil and can add soil content in the crevices. Finally, dead organic matter of such a pioneer community can add more suitable substrata for the growth of the next community (Roy et al. 1983).

The objectives of the present study were: (i) to document the chasmophytic diversity of the study area, (ii) to study the various factors affecting the growth and survival of chasmophytes in the study area, and (iii) to characterize the chasmophytic plants in the study area.

MATERIALS AND METHODS

Study Area

The study area Olichuchattam is situated in Thiruvambady Panchayath of Kozhikode District of Kerala State, India (11.435°N & 76.079°E; Figure 1, Image 1). Olichuchattam area comes under the jurisdiction of Vellarimala Forest Range which is a part of the Western Ghats. Most of the hill range falls in the Meppadi Forest Range of South Wayanad Division, with some parts falling in the Thamarassery Range of Kozhikode Division (Image 2-5). Olichuchattam is a waterfall of Iruvanji River situated in evergreen forests on the way to Vellarimala Hills. The hill ranges are accessible on foot from Muthappanpuzha, a small town which is about 50km from Kozhikode. By trekking for about 4-5 km (approximately three hours) one can explore the Olichuchattam Waterfalls. By trekking from Olichuchattam to the upper foothills one can explore different places like Vellarimala, Vavulmala, and Masthakappara. From the top of Olichuchattam itself one can clearly notice the changes in vegetation and the changes in the landscape because of the altitudinal

Figure 1. Map of India and Kerala State (Source: GIS)

variations. The entire waterfall area and adjacent areas are full of wet and moist rocky patches especially in the monsoons and become dry during the summer. This characteristic habitat enables different plants to survive and adapt in a special way based on the different seasons.

Data collection and analysis

The current study was based on extensive exploration and field observations during the period September 2017–February 2018. In the present study an attempt was made to document and analyse the chasmophytic vegetation of Olichuchattam Waterfall areas of Kozhikode District, Kerala. The documentation was mainly based on field observations, discussions with local people as well as scrutinizing the literature. For effective and accurate study, the area was visited and analysed in different climatic conditions in different periods such as rainy season, winter season, and summer season. The study was mainly based on the rock crevices in nearby areas of the upper regions of the waterfalls (1,400m), near the waterfalls (1,250m), and the lower foothills of the waterfalls (700m) which showed considerable variations in their altitudes ranging 700–1,400 m.

During the field visits, the plant specimens were collected to prepare herbariums. The collected specimens were identified taxonomically with the help of available floras and literature (Gamble 1915–1936; Sasidharan 2004). The specimens were processed for the preparation of the herbarium by standard methods. The voucher specimens are deposited in the Herbaria of PG & Research Department of Botany, St. Joseph's College, Kozhikode (DEV) for future reference.

Image 1. Satellite image of the study area (Souce: Google Map)

Photographs of the study area in different seasons as well as the images of plants were taken. In addition to these, suitable maps, tables, figures, and images are given in appropriate places.

RESULTS AND DISCUSSIONS

Chasmophytic diversity

Results of the present study reveal 120 species (106 native species and 14 non-native species) belonging to 49 families and 93 genera documented in general (Table 1). Of these, five species are bryophytes of five families and five genera. Similarly, in pteridophytes, a total of 10 species belonging to nine families and nine genera are recorded. Angiosperms are dominant among these groups, which include 105 species that belong to 35 families and 79 genera (Table 2, Figure 2).

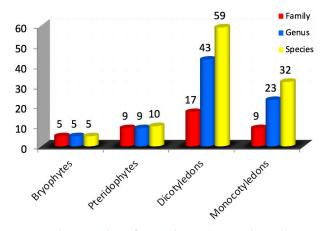
The dominant native chasmophytic plant families of the study area are analysed. The dominant native families are as follows, Poaceae with 15 species followed by Balsaminaceae with seven species, Asteraceae and Commelinaceae with six species each, Malvaceae and Melastomataceae with five species each, and Scrophulariaceae represented by three species (Figure 3).

Similarly, the analysis of the dominant native genera reveals that the genus *Impatiens* dominates with seven species followed by *Blumea, Cyanotis, Eriocaulon,* and *Arundinella* each with three species, respectively (Figure 4).

The analysis of the overall plant habits/growth form reveals that herbs are the dominant with 100 species,

Christy & Thomas

Image 2–5. Different views of the study area. © Arun Christy.



followed by 16 species of shrubs and four species of climbers.

Distribution pattern of chasmophytic plants

The diversity and distribution of the recorded 120 chasmophytic plants in the study area reveals that there are only about 25 species which are commonly distributed. Fifty-eight species are uncommon or sporadically distributed and 37 of them are very rarely occurring in the study area. The high number of uncommon and rare plants in the study area indicates that they need very specific ecological conditions.

It was observed the distribution of the plants greatly vary with respect to the different seasons. In the monsoon season, the diversity of water loving chasmophytic plants are seen more. The taxa like *Impatiens, Sonerila, Eriocaulon, Utricularia* are dominant vegetation cover during this period. While in the summer period, fewer species survive in the area but grasses and some weedy

species are seen thriving well. Also with the variations in the altitudes, the vegetation changes. Plants like *Pellaea falcata, Bolbitis appendiculata, Impatiens* sp., *Sonerila* sp., *Osbeckia* sp., *Arundinella* sp., *Pouzolzia*

Table 1. Total plant checklist of the study area.

	Botanical name	otanical name Family					
Bryophytes							
1	Bryum argenteum Hedw.	Bryaceae	Native				
2	Campylopus flexuosus (Hedw.) Brid.	Dicranaceae	Native				
3	Cyathodium cavernarum Kunze	Targioniaceae	Native				
4	<i>Pogonatum aloides</i> (Hedw.) P. Beauv.	Polytrichaceae	Native				
5	Riccia crystallina L.	Ricciaceae	Native				
Pterid	lophytes						
1	Adiantum raddianum C. Presl	Adiantaceae	Native				
2	Bolbitis appendiculata (Willd.) K. Iwats.	Dryopteridaceae	Native				
3	Drynaria quercifolia (L) J. Sm.	Drynariaceae	Native				
4	Lepisorus nudus (Hook.) Ching	Polypodiaceae	Native				
5	Lygodium flexuosum (L.) Sw.	Lygodiaceae	Native				
6	Parahemionitis cordata (Roxb. <i>ex</i> Hook. & Grev.) Fras.	Hemionitidaceae	Native				
7	Pellaea falcata (R.Br.) Fee	Pteridaceae	Native				
8	<i>Pteridium aquilinum</i> (L.) Kuhn.	Dennstaedtiaceae	Native				
9	Selaginella involvens (Sw.) Spring	Selaginellaceae	Native				
10	Selaginella tenera (Hook. & Grev.) Spring	ra (Hook. & Selaginellaceae					
Angio	sperms						
1	Abelmoschus angulosus Wall. ex Wight & Arn.	Malvaceae	Native				
2	Aeschynomene americana L.	Fabaceae	Non- native				
3	Apluda mutica L.	Poaceae	Native				
4	Arundina graminifolia (D. Don) Hochr.	Orchidaceae	Native				
5	Arundinella leptochloa (Nees ex Steud.) Hook. F.	Poaceae	Native				
6	<i>Arundinella metzii</i> Hochst. <i>ex</i> Miq.	Poaceae	Native				
7	Arundinella pumila (Hochst. ex A. Rich.) Steud.	Роасеае	Native				
8	Barleria courtallica Nees	Acanthaceae	Native				
9	Blumea barbata DC.	Asteraceae	Native				
10	Blumea belangeriana DC.	Asteraceae	Native				
11	Blumea membranacea Wall. ex DC.	Asteraceae	Native				
12	<i>Bulbophyllum sterile</i> (Lam.) Suresh	Orchidaceae	Native				
13	Burmannia coelestis D. Don	Burmanniaceae	Native				
14	Canscora diffusa (Vahl) R. Br. ex Roem. & Schult.	Gentianaceae	Native				
15	Canscora perfoliata Lam.	Gentianaceae	Native				
16	<i>Christisonia tubulosa</i> (Wight) Benth. <i>ex</i> Hook. f.	Orobanchaceae	Native				
17	Chromolaena odorata (L.) King & Robins.	Asteraceae	Non- native				

	r		
	Botanical name	Family	Native/ Non- native
18	Chrysopogon hackelii (Hook.f.) C.E.C. Fisch	Poaceae	Native
19	<i>Cleome burmannii</i> Wight & Arn.	Capparaceae	Native
20	Cleome viscosa L.	Capparaceae	Native
21	Commelina benghalensis L.	Commelinaceae	Native
22	Commelina clavata Clarke	Commelinaceae	Native
23	Costus speciosus (Koenig) J.E. Smith	Zingiberaceae	Native
24	Crassocephalum crepidioides (Benth.) S. Moore	Asteraceae	Native
25	Cyanotis arachnoidea Clarke	Commelinaceae	Native
26	Cyanotis cristata (L.) D. Don.	Commelinaceae	Native
27	<i>Cyanotis papilionacea</i> (Burm. f.) Schult. f.	Commelinaceae	Native
28	<i>Cymbopogon flexuosus</i> (Nees <i>ex</i> Steud.) Wats.	Poaceae	Native
29	Cyperus tenuispica Steud.	Cyperaceae	Native
30	Drymaria cordata (L.) Willd.	Caryophyllaceae	Native
31	Emilia sonchifolia (L.) DC.	Asteraceae	Native
32	Eriocaulon quinquangulare L.	Eriocaulaceae	Native
33	Eriocaulon rhodaeFyson	Eriocaulaceae	Native
34	Eriocaulon xeranthemum Mart.	Eriocaulaceae	Native
35	<i>Euphorbia vajravelui</i> Binoj. & Balakr.	Euphorbiaceae	Native
36	<i>Geissaspis cristata</i> Wight & Arn.	Fabaceae	Native
37	Glinus oppositifolius (L.) A. DC.	Aizoaceae	Native
38	Hemidesmus indicus (L.) R. Br.	Apocynaceae	Native
39	Heteropogon contortus (L.) P. Beauv. ex Roem. &Schult.	Poaceae	Native
40	Hibiscus hispidissimus Griff.	Malvaceae	Native
41	Homonoia riparia Lour.	Euphorbiaceae	Native
42	Hyptis suaveolens (L.) Poit.	Lamiaceae	Non- native
43	Impatiens cordata Wight	Balsaminaceae	Native
44	Impatiens diversifolia Wall. ex Wight & Arn	Balsaminaceae	Native
45	<i>Impatiens gardneriana</i> Wight	Balsaminaceae	Native
46	Impatiens herbicola Hook. f.	Balsaminaceae	Native
47	Impatiens modesta Wight	Balsaminaceae	Native
48	Impatiens scapiflora Heyne ex Roxb.	Balsaminaceae	Native
49	Impatiens viscosa Bedd.	Balsaminaceae	Native
50	Ipomoea deccana Austin	Convolvulaceae	Native
51	<i>Isachne bourneorum</i> C.E.C. Fisch.	Poaceae	Native
52	<i>lsachneglobosa</i> (Thunb.) O. Ktze.	Poaceae	Native
53	<i>lschaemum dalzelii</i> Stapf <i>ex</i> Bor	Poaceae	Native
			~

Christy	y & Thomas
CHIISC	y & momas

	Botanical name	Family	Native/ Non- native	
54	<i>Isodon lophanthoides</i> (Buch Ham. <i>ex</i> D.Don) H.Hara	Lamiaceae	Native	
55	Jansenella griffithiana (C. Muell.) Bor	Poaceae	Native	
56	<i>Justicia japonica</i> Thunb	Acanthaceae	Native	
57	Knoxia sumatrensis (Retz.) DC.	Rubiaceae	Native	
58	Lantana camara L.	Verbenaceae	Non- native	
59	Leucas ciliata Benth. ex Wall.	Lamiaceae	Native	
60	<i>Lindernia ciliata</i> (Colsm.) Pennell	Scrophulariaceae	Native	
61	Lindernia crustacea (L.) F.v. Muell.	Scrophulariaceae	Native	
62	Melastoma malabathricum L.	Melastomataceae	Native	
63	Melochia corchorifolia L.	Sterculiaceae	Native	
64	<i>Merremia umbellata</i> (L.) Hall.	Convolvulaceae	Native	
65	Microstachys chamaelea (L.) MuellArg.	Euphorbiaceae	Native	
66	Mimosa diplotricha C. Wight ex Sauvalle	Mimosaceae	Non- native	
67	Mimosa pudica L.	Mimosaceae	Non- native	
68	Mitracarpus hirtus (L.) DC.	Rubiaceae	Non- native	
69	Mollugo pentaphylla L.	Aizoaceae	Native	
70	Murdannia semiteres (Dalz.) Sant.	Commelinaceae	Native	
71	Naregamia alata Wight & Arn.	Meliaceae	Native	
72	Oldenlandia corymbosa L.	Rubiaceae	Native	
73	Osbeckia aspera (L.) Blume	Melastomataceae	Native	
74	<i>Osbeckia virgata</i> D. Don <i>ex</i> Wight & Arn.	Melastomataceae	Native	
75	Peliosanthes teta Andr. ssp. humilis	Haemodaraceae	Native	
76	Pennisetum polystachyon (L.) Schult.	Poaceae	Native	
77	<i>Peperomia pellucida</i> (L.) Kunth	Piperaceae	Non- native	
78	Pilea microphylla (L.) Liebm.	Urticaceae	Non- native	

	Botanical name Family		Native/ Non- native
79	Pogonatherum crinitum (Thunb.) Kunth	Poaceae	Native
80	Pouzolzia wightii Bennett,	Urticaceae	Native
81	Rotala malampuzhensis Nair ex Cook	Lythraceae	Native
82	<i>Rungia pectinata</i> (L.) Nees	Acanthaceae	Native
83	Scoparia dulcis L.	Scrophulariaceae	Non- native
84	Sida alnifolia L.	Malvaceae	Native
85	Smithia gracilis Benth.	Fabaceae	Native
86	Sonerila rheedei Wight & Arn.	Melastomataceae	Native
87	Sonerila versicolor Wight var. axillaris	Melastomataceae	Native
88	Spermacoce latifolia Aubl.	Rubiaceae	Non- native
89	Spilanthes radicans Jacq.	Asteraceae	Non- native
90	<i>Stemodia verticillata</i> (Mill.) Sprague	Scrophulariaceae	Non- native
91	Strobilanthes lanatus Nees	Acanthaceae	Native
92	Themeda sabarimalayana Sreek. & V.J. Nair	Poaceae	Native
93	Themeda triandra Forssk.	Poaceae	Native
94	Torenia bicolor Dalz.	Scrophulariaceae	Native
95	Tridax procumbens L.	Asteraceae	Non- native
96	Triumfetta annua L.	Tiliaceae	Native
97	Triumfetta rhomboidea Jacq.	Tiliaceae	Native
98	Urena lobata L ssp. lobata	Malvaceae	Native
99	Urena lobata L. ssp. sinuata	Malvaceae	Native
100	Utricularia graminifolia Vahl.	Lentibulariaceae	Native
101	Utricularia striatula Smith	Lentibulariaceae	Native
102	Vernonia cinerea (L.) Less.	Asteraceae	Native
103	Xenostegia tridentata (L.) Austin & Staples	Convolvulaceae	Native
104	Xyris indica L.	Xyridaceae	Native
105	<i>Zeuxine longilabris</i> (Lindl.) Benth. <i>ex</i> Hook. f.	Orchidaceae	Native

Table 2. Analysis of chasmophytic diversity in the study area.

Analysis of plant diversity		Families		Genera		Species	
Bryophyta		5		5		5	
Pteridophyta		9		9		10	
	Polypetalae	12		20		*29(3)	
Dicotyledons	Gamopetalae	11	26	30	56	*26(9)	73
	Monochlamydae	3]	6]	*4(2)	
Monocotyledons		9		23		32	
Total		49		93		120	

*-native species | ()-Non-native species

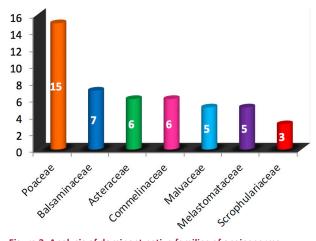
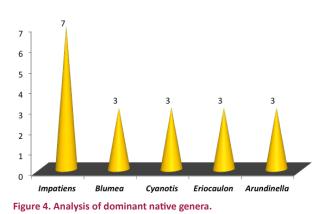
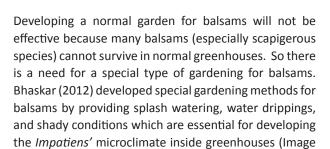


Figure 3. Analysis of dominant native families of angiosperms.


wightii, Strobilanthes lanatus, Arundina graminifolia, and *Themeda* sp. are distributed in high altitude areas (1,200–1,400m).


Ornamental chasmophytes

The present study analysed that 47 species of plants have ornamental potential. Among the 47 species, four of them are pteridophytes and the rest of the 43 species are angiosperms. Of the 47 species distributed in the area, family Balsaminaceae is dominant with seven species followed by Melastomataceae and Commelinaceae with five species each, Scrophulariaceae and Convolvulaceae with three species each. Considering the ornamental potential of the plants of documented chasmophytes, 32 species have a good looking habit, seven species have attractive foliage and about 37 species have good looking flowers (Table 3). The colour of the flowers along with good looking habit of many chasmophytic plants is an aspect of ornamental potentiality, therefore, such taxa has also been identified for possible cultivation in rock gardens or rockeries for ornamental purposes (Binu et al. 2012).

Impatiens for rockery/rock gardening

Balsams or *Impatiens* are often called 'Jewel Weeds' or 'Orchid Balsams'. They are handsome plants bearing curious and variously coloured flowers. Southern Indian species of *Impatiens* have a wealth of new and ornamentally desirable flower colours like red, pink, orange, scarlet, yellow and may have different combinations of these colours. This beautiful wild flower can be seen on wet perpendicular rocks or old walls in the hills of high elevations. The balsam thrives best during monsoon months (June–September) and the best collections can only be acquired in the monsoon.

Invasive chasmophytes

6).

The present study also observed that, there are 14 plant species, which are introduced from various countries as well as different regions of the world and now they are naturalized in chasmophytic habitats of the present study area. The nativity of these species includes central America, South America, tropical America, and tropical Africa (Sasidharan 2004). These species are invasive in our country and have established themselves, thereby a threat to other native flora (Table 4).

Soil analysis

Soil samples from different regions of the study area (three samples were collected based on altitudinal variations such as lower, middle, higher altitudes) were used for the soil analysis. Soil samples were analysed with the help of Indian Institute of Spices Research, Kozhikode as per the methods adopted by Jackson (1971). The parameters analysed are pH value, percentage of organic Carbon, amount of Nitrogen, Phosphorous, and Potassium and the results are presented in Table 5 (Furley 1968).

The soil analysis indicates that the rocky crevices of the lower foothills (700m) is more nutrient rich than the middle and high altitude soils. This may be due to the washing of the soil and nutrients from the high altitude areas to low altitude areas and the subsequent

Christy & Thomas

Table 3. List of ornamental chasmophytes from the Olichuchattam area of Kozhikode District, Kerala.

	Botanical name	Family	Ornamental characters		
Pteri	dophytes				
1.	Adiantum raddianum C. Presl	Adiantaceae	Good looking habit and attractive foliage.		
2.	Bolbitis appendiculata (Willd.) K.Iwats.	Dryopteridaceae	Good looking habit and attractive foliage.		
3.	Pellaea falcata (R.Br.)	Pteridaceae	Good looking habit and attractive foliage.		
4.	Selaginellainvolvens (Sw.) Spring	Selaginellaceae	Good looking habit and attractive foliage.		
Angi	osperms				
1.	Abelmoschus angulosus Wall. ex Wight & Arn.	Malvaceae	Attractive large pink coloured flowers		
2.	Arundina graminifolia (D.Don) Hochr.	Orchidaceae	Good looking pink/purple coloured flowers also have a good looking habit		
3.	Barleria courtallica Nees	Acanthaceae	Attractive light blue coloured flowers.		
4.	Burmannia coelestis D.Don.	Burmanniaceae	Attractive light pink coloured flowers.		
5.	Canscora diffusa (Vahl) R.Br. ex Roem. & Schult.	Gentianaceae	Good looking habit		
6.	Canscora perfoliata Lam.	Gentianaceae	Beautiful cream coloured flowers		
7.	Christisonia tubulosa (Wight) Benth. ex Hook.f.	Orobanchaceae	Attractive purple-white tinged-yellow coloured flowers		
8.	Commelina benghalensis L.	Commelinaceae	Beautiful blue flowers with good looking habit.		
9.	Commelina clavata Clarke	Commelinaceae	Good looking blue coloured flowers with attractive creeping plant habit.		
10.	Crassocephalum crepidioides (Benth.) S.Moore	Asteraceae	Good looking yellow-orange coloured flowers and also have attractive pappu hairs.		
11.	Cyanotis arachnoidea Clarke	Commelinaceae	Attractive blue coloured flowers and also have attractive habit		
12.	Cyanotis papilionacea (Burm.f.) Schult.	Commelinaceae	Attractive blue coloured flowers and nice habit.		
13.	Eriocaulon quinquangulare L.	Eriocaulaceae	Attractive plant habit with good looking white headed flowers.		
14.	Eriocaulon xeranthemum Mart.	Eriocaulaceae	Attractive plant habit with good looking white headed flowers.		
15.	Euphorbia vajravelui Binoj. & Balakr.	Euphorbiaceae	Good looking plant habit.		
16.	Geissaspis cristata Wight & Arn.	Fabaceae	Good looking habit, with delicate flowers and persistent fimbriate bracts		
17.	Impatiens cordata Wight	Balsaminaceae	A good habit and pink coloured flowers.		
18.	Impatiens diversifolia Wall. ex Wight	Balsaminaceae	Attractive pink coloured flowers.		
19.	Impatiens gardneriana Wight	Balsaminaceae	Attractive plants with a good habit and pink coloured flowers.		
20.	Impatiens herbicola Hook. f.	Balsaminaceae	Small attractive white coloured flowers		
21.	Impatiens modesta Wight	Balsaminaceae	Attractive plants with rose coloured flowers.		
22.	Impatiens scapiflora Heyne ex Roxb.	Balsaminaceae	Attractive habit and light rose coloured flowers.		
23.	Impatiens viscosa Bedd.	Balsaminaceae	Attractive small pink flowers and an attractive habit.		
24.	Ipomoea deccana Austin	Convolvulaceae	Good looking purple coloured flowers and attractive habit.		
25.	Leucas ciliata Benth. ex Wall.	Lamiaceae	Good looking white flowers.		
26.	Lindernia ciliata (Colsm.) Pennell var. ciliata	Scrophulariaceae	Good looking purple flowers with attractive habit.		
27.	Lindernia crustacea (L.) Muell.	Scrophulariaceae	Good looking purple flowers.		
28.	Melastoma malabathricum L.	Melastomataceae	Attractive large rose coloured flowers.		
29.	Merremia umbellata (L.) Hall. f.	Convolvulaceae	Attractive white coloured flowers.		
30.	Murdannia semiteres (Dalz.) Sant.	Commelinaceae	Attractive plant habit		
31.	Naregamia alata Wight & Arn.	Meliaceae	Good looking white coloured flowers.		
32.	Osbeckia aspera (L.) Blume var. aspera	Melastomataceae	Attractive large pink coloured flowers and a good looking habit.		
33.	Osbeckia virgata D. Don ex Wight & Arn.	Melastomataceae	Attractive large pink coloured flowers with good looking habit.		
34.	Pogonatherum crinitum (Thunb.) Kunth	Poaceae	Attractive plant habit and nice foliage		
35.	Rotala malampuzhensis Nair ex Cook	Lythraceae	Attractive plant habit with good looking foliage.		
36.	Smithia gracilis Benth.	Fabaceae	Attractive yellow flowers and a good looking habit.		
37.	Sonerila rheedei Wight & Arn.	Melastomataceae	Attractive pink coloured flowers		
38.	Sonerila versicolor Wight var. axillaris (Wight) Gamble	Melastomataceae	Attractive pink coloured flowers with good looking habit which have leaves wit white dots on it.		
39.	Torenia bicolor Dalz.	Scrophulariaceae	Attractive dark purple-yellow coloured flowers.		
40.	Utricularia graminifolia Vahl.	Lentibulariaceae	Attractive plants with a good habit and blue coloured flowers.		
41.	Utricularia striatula Smith	Lentibulariaceae	Attractive plants with pink-yellow coloured flowers.		
42.	Xenostegia tridentata (L.) Austin & Staples	Convolvulaceae	Attractive cream to yellow coloured flowers.		
43.	Xyris indica L.	Xyridaceae	Good looking plants with beautiful yellow flowers.		

	Botanical names	Family	Nativity	
1.	Aeschynomene americana L.	Fabaceae	Central America	
2.	Chromolaena odorata (L.) King	Asteraceae	Central America	
3.	<i>Hyptis suaveolens</i> (L.) Poit.	Lamiaceae	Central America	
4.	Lantana camara L.	Verbenaceae	Tropical America	
5.	<i>Mimosa diplotricha</i> Wight ex Sanv.	Mimosaceae Tropical Ame		
6.	Mimosa pudica L.	Mimosaceae	South America	
7.	<i>Mitracarpus hirtus</i> (L.) DC.	Rubiaceae	Tropical Africa	
8.	Peperomia pellucida (L.) Kunth.	Piperaceae	Tropical America	
9.	Pilea microphylla (L.) Liebm.	Urticaceae	South America	
10.	Scoparia dulcis L.	Scrophulariaceae	Tropical America	
11.	Spermacoce latifolia Aubl.	Rubiaceae	Tropical Africa	
12.	Spilanthes radicans Jacq.	Asteraceae	Tropical America	
13.	Stemodia verticillata Mill.	Scrophulariaceae	Tropical America	
14.	Tridax procumbens L.	Asteraceae	Tropical America	

Table 5. Analysis of soil samples from chasmophytic habitats.

Altitudes	рН	Organic carbon (%)	Nitrogen (mg/kg)	Phosphorous (mg/kg)	Potassium (mg/kg)
Lower altitude (700m)	5.00	5.95%	390	5.1	172
Middle altitude (1,250m)	4.71	5.90%	380	4.1	145
Higher altitude (1,400m)	4.52	5.85%	370	3.8	138

deposition. The soil samples of rock crevices are rich in organic carbon and nitrogen due to the weathering of rocks and the deposition of them into the crevices. The present study also highlights that the growth pattern of chasmophytes in the rock crevices mainly depends on the amount of essential elements in the soil of such micro habitats.

Threats to the chasmophytic habitats

Generally, habitat loss is due to the anthropogenic activities. It was noticed that compared to anthropogenic activities, the present study area was also affected by over grazing as well as unsustainable utilization of natural resources by natives. It may enhance the depth of threat

Image 6. Different species of Impatiens from the study area: a—Impatiens cordata Wight | b—Impatiens gardneriana Wight | c—Impatiens scapiflora Heyne ex Roxb | d—Impatiens diversifolia Wall. ex Wight | e—Impatiens modesta Wight. | f—Impatiens viscosa Bedd. © Arun Christy

Christy & Thomas

Image 7. Selected images of chasophytes in the study area: a—*Cyathodium cavernarum* Kunze | b—*Adiantum raddianum* C.Presl. | c—*Osbeckia aspera* (L.) Blume | d—*Sonerila rheedei* Wight & Arn. | e—*Sonerila versicolor* Wight var. *axillaris* (Wight) Gamble | f—*Christisonia tubulosa* (Wight) Benth. ex Hook.f. | g—*Utricularia graminifolia* Vahl | h—*Utricularia striatula* Smith | i—*Euphorbia vajravelui* Binoj. & Balakr. | j—*Pilea microphylla* (L.) Liebm. | k—*Cyanotis arachnoidea* Clarke | I—*Murdannia semiteres* (Dalz.) Sant. © Arun Christy.

to the study especially during peak monsoon period by land slides and flooding of rivers. Invasive species are the biggest threat to many native chasmophytes in the study area. Tourists trekking the Vellarimala cause destruction to the existing ecosystem to some extent. There are also many study reports showing that the plants which were distributed earlier in the foothills of Olichuchattam area are disappearing due to the frequent land slides during the monsoon (Manudev et al. 2012).

CONCLUSION

Chasmophytes to some extent determine the vegetation of the valley. The rocky cliffs and crevices represent a good indicator of rich biodiversity within

small areas. The chasmophytic vegetation hasn't gained much attention because of the lack of research carried out in this field and the lack of knowledge about this particular vegetation.

REFERENCES

- Bashan, Y., C.Y. Li, V.K. Lebsky & M. Monero (2002). Colonization of chasmophytic plants in arid Baja California, Mexico. *Plant Biology* 4: 392–402.
- Bhaskar, V. (2012). Taxonomic monograph on Impatiens L. (Balsaminaceae) of Western Ghats, South India. The Key Genus for Endemism. Centre for Plant Taxonomic Studies, Bangalore, Karnataka, India, 11–14pp.
- Binu, T. & A. Rajendran (2012). Chasmophytic fern and fern allies of Coimbatore District, Southern Western Ghats, Tamil Nadu, India. *Journal of Applied Biological Research* 11: 1–10.
- Binu, T., A. Rajendran & V. Aravindhan (2012). Chasmophytes: the potential plants for Rock gardening, from Velliangiri Hills of Southern Western Ghats of Tamil Nadu, India. *Botanical Report* 1(1): 14–19.
- Danin, A., R. Gerson, K. Marton & J. Garty (1982). Patterns of limestone and dolomite weathering by lichens and blue – green algae and their paleoclimatic significance. *Paleoecology* 37: 221– 233.
- Davis, P.H. (1982). Cliff vegetation in the Eastern Mediterranean. *Journal of Ecology* 39: 63–93.

- Furley, P.A. (1968). The relationships between soil formation and gradient in the Oxford area. *Geomorpholgy* 12: 25–42.
- Gamble, J.S. & C.E. CFischer (1915-1936). The Flora of Presidency of Madras. Part 1- 11 (Part 1-7 by Gamble and 8- 11 by Fischer) Adlard and Sons Ltd., London. (Repr. ed. Vols. 13. 1957).
- Jackson, M.L. (1971). Soil Chemical Analysis. Prentice-Hall, New Delhi, India, 498pp.
- Manudev, K.M., A. Weber & S. Nampy (2012). *Henckelia pradeepiana*, a new species of Gesneriaceae from the southern Western Ghats, India. *Rheedea* 22(2): 119–123.
- Myers, N. (1988 and 1990). Threatened Biotas: hot spots in tropical forests. *The Environment* 8: 1–20; 10: 243, 256.
- Nair, N.C. & P. Daniel (1986). The floristic diversity of the Western Ghats and its conservation: A review. Proceedings of the Indian Academy of Sciences (Animal Science/ Plant Science) Supplement 127–163.
- Nayar, M.P. (1996). Hot Spots of Endemic Plants of India, Nepal and Bhutan. Tropical Botanical Garden and Research Institute, Thiruvananthapuram, India, 256pp.
- Pascal, J.P., B.R. Ramesh & D. De Franceschi (2004).Wet evergreen forest types of the southern Western Ghats, India. *Tropical Ecology* 45(2): 281–292.
- Porembski, S. (2000). Biotic diversity of isolated rock outcrops in tropical and temperate regions. *Journal of Ecology* 146: 177–208.
- Roy, D.L., R.W. Miller, C. John & C. Shickluna (1983). An Introduction to Soil and Plant growth. Prentice-Hall, Englewood Cliffs, NJ, 67–75pp.
- Sasidharan, N. (2004). KFRI Handbook, No. 17; Biodiversity documentation for Kerala. Part 6: Flowering plants.
- Schimper, A.F. (1898). Plant Geography up on a Physiological Basis. Oxford University Press, England.

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

June 2020 | Vol. 12 | No. 9 | Pages: 15967–16194 Date of Publication: 26 June 2020 (Online & Print) DOI: 10.11609/jott.2020.12.9.15967-16194

www.threatenedtaxa.org

Communications

Dusky Langurs Trachypithecus obscurus (Reid, 1837) (Primates: Cercopithecidae) in Singapore: potential origin and conflicts with native primate species – Andie Ang, Sabrina Jabbar & Max Khoo, Pp. 15967–15974

A new report on mixed species association between Nilgiri Langurs Semnopithecus johnii and Tufted Grey Langurs S. priam (Primates: Cercopithecidae) in the Nilgiri Biosphere Reserve, Western Ghats, India

- K.S. Chetan Nag, Pp. 15975-15984

A review of the bacular morphology of some Indian bats (Mammalia: Chiroptera) – Bhargavi Srinivasulu, Harpreet Kaur, Tariq Ahmed Shah, Gundena Devender, Asad Gopi, Sreehari Raman & Chelmala Srinivasulu, Pp. 15985–16005

Status of the Critically Endangered Bengal Florican *Houbaropsis bengalensis* (Gmelin, 1789) in Koshi Tappu Wildlife Reserve, Nepal

– Hem Sagar Baral, Tek Raj Bhatt, Sailendra Raj Giri, Ashok Kumar Ram, Shyam Kumar Shah, Laxman Prasad Poudyal, Dhiraj Chaudhary, Gitanjali Bhattacharya & Rajan Amin, Pp. 16006–16012

Observations on breeding behaviour of a pair of endangered Egyptian Vultures *Neophron percnopterus* (Linnaeus, 1758) over three breeding seasons in the plains of Punjab, India – Charn Kumar, Amritpal Singh Kaleka & Sandeep Kaur Thind, Pp. 16013–16020

Additions to the cicada (Insecta: Hemiptera: Cicadidae) fauna of India: first report and range extension of four species with notes on their natural history from Meghalaya –Vivek Sarkar, Cuckoo Mahapatra, Pratyush P. Mohapatra & Manoj V. Nair, Pp. 16021–16042

The perceptions of high school students on the habitat of the crab *Ucides cordatus* (Linnaeus, 1763) (Crustacea: Decapoda: Ucididae) in northern Rio de Janeiro State, southeastern Brazil

– Laiza Fernanda Quintanilha Ribeiro, Laura Helena de Oliveira Côrtes & Ana Paula Madeira Di Beneditto, Pp. 16043–16047

Woody species diversity from proposed ecologically sensitive area of northern Western Ghats: implications for biodiversity management – M. Tadwalkar, A. Joglekar, M. Mhaskar & A. Patwardhan, Pp. 16048–16063

Resolving taxonomic problems in the genus *Ceropegia* L. (Apocynaceae: Asclepiadoideae) with vegetative micromorphology

– Savita Sanjaykumar Rahangdale & Sanjaykumar Ramlal Rahangdale, Pp. 16064–16076

A checklist of angiosperm flora of low elevation lateritic hills of northern Kerala, India – K.A. Sreejith, V.B. Sreekumar, P. Prashob, S. Nita, M.P. Prejith & M.S. Sanil, Pp. 16077–16098

Phytodiversity of chasmophytic habitats at Olichuchattam Waterfalls, Kerala, India – Arun Christy & Binu Thomas, Pp. 16099–16109

Contribution to the macromycetes of West Bengal, India: 51–56 – Diptosh Das, Entaj Tarafder, Meghma Bera, Anirban Roy & Krishnendu Acharya, Pp. 16110–16122

Short Communications

Catalogue of herpetological specimens from peninsular India at the Sálim Ali Centre for Ornithology & Natural History (SACON), India

- S.R. Ganesh, S. Bhupathy, P. Karthik, G. Babu Rao & S. Babu, Pp. 16123-16135

Osteological description of Indian Skipper Frog *Euphlyctis cyanophlyctis* (Anura: Dicroglossidae) from the Western Ghats of India – Pankaj A. Gorule, Sachin M. Gosavi, Sanjay S. Kharat & Chandani R. Verma, Pp. 16136–

– Palikaj A. Gorule, Sachim M. Gosavi, Sanjay S. Kharat & Chandam R. Verma, Pp. 10150– 16142 DNA barcode reveals the occurrence of Palearctic *Olepa schleini* Witt et al., 2005 (Lepidoptera: Erebidae: Arctiinae) from peninsular India with morphological variations and a new subspecies

– Aparna Sureshchandra Kalawate, Shital Pawara, A. Shabnam & K.P. Dinesh, Pp. 16143–16152

Present status of the genus *Sphrageidus* Maes, 1984 (Lepidoptera: Erebidae: Lymantriinae) from India

- Amritpal Singh Kaleka, Devinder Singh & Gagan Preet Kour Bali, Pp. 16153-16160

Early stages of Nilgiri Grass Yellow *Eurema nilgiriensis* (Yata, 1990) (Lepidoptera: Pieridae), with a note on its range extension in the Kerala part of the Western Ghats, India

Balakrishnan Valappil & V.K. Chandrasekharan, Pp. 16161–16165

Notes

Breeding site records of three sympatric vultures in a mountainous cliff in Kahara-Thathri, Jammu & Kashmir, India

- Muzaffar A. Kichloo, Sudesh Kumar & Neeraj Sharma, Pp. 16166-16169

First distribution record of Elongated Tortoise Indotestudo elongata (Blyth, 1853) (Reptilia: Testudines: Testudinidae) from Bihar, India – Arif, Sourabh Verma, Ayesha Mohammad Maslehuddin, Uttam, Ambarish Kumar Mall,

Gaurav Ojha & Hemkant Roy, Pp. 16170–16172

The niche of shrimp stocks (Xiphopenaeus kroyeri Heller, 1862) from southeastern Brazil: a stable isotope approach

 – Keltony de Aquino Ferreira, Leandro Rabello Monteiro & Ana Paula Madeira Di Beneditto, Pp. 16173–16176

First record of the White Tufted Royal *Pratapa deva lila* Moore, [1884] (Lepidoptera: Lycaenidae: Theclinae) from Himachal Pradesh, extending its known range westwards – Sanjay Sondhi, Pp. 16177–16179

Range extension of the Lilac Silverline Apharitis lilacinus to southern Rajasthan and a review of the literature

–K.S. Gopi Sundar, Swati Kittur, Vijay Kumar Koli & Utkarsh Prajapati, Pp. 16180–16182

A record of gynandromorphism in the libellulid dragonfly *Crocothemis servilia* (Insecta: Odonata) from India – R.V. Renjith & A. Vivek Chandran, Pp. 16183–16186

Carcass consumption by Nasutitermes callimorphus (Blattodea: Isoptera) in highland forests from Brazil

 – Igor Eloi, Mário Herculano de Oliveira & Maria Avany Bezerra-Gusmão, Pp. 16187– 16189

New records of nasutiform termite (Nasutitermitinae: Termitidae: Isoptera) from Meghalaya, India

- Khirod Sankar Das & Sudipta Choudhury, Pp. 16190-16192

Corrigendum

Corrections to A citizens science approach to monitoring of the Lion Panthera leo (Carnivora: Felidae) population in Niokolo-Koba National Park, Senegal – Dimitri Dagorne, Abdoulaye Kanté & John B. Rose, Pp. 16193–16194

Publisher & Host

Member