The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

Journal of Threatened Taxa

Building evidence for conservation globally

www.threatenedtaxa.org

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

NOTE

POLLINATORS OF SIKKIM MANDARIN ORANGE \textit{Citrus reticulata}\textbf{ (Sapindales: Rutaceae)}

Urbashi Pradhan & M. Soubadra Devy

26 March 2019 | Vol. 11 | No. 5 | Pages: 13625–13628

DOI: 10.11609/jott.4528.11.5.13625-13628

For Focus, Scope, Aims, Policies, and Guidelines visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0

For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions

For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2

For reprints, contact <ravi@threatenedtaxa.org>

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.
Pollinators of Sikkim Mandarin Orange

*Citrus reticulata* (Sapindales: Rutaceae)

Urbashi Pradhan & M. Soubadra Devy

1 Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Srinampura, Jakkur, Bengaluru, Karnataka 560064, India.  
2 Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India  
urbashipradhan@gmail.com (corresponding author), soubadra@atree.org

Sikkim Mandarin Orange (*Citrus reticulata* Blanco, 1837) is a member of the Rutaceae family and a commercially desirable variety of the mandarin group native to Sikkim. The Sikkim Mandarin Orange (SMO) growing area lies at an altitudinal range of 700–1,500 m and it is an annual flowering plant. Mandarin orange is dependent on bees for its pollination and pollinators help in higher yield and increased fruit set (ICIMOD 2003). Irrespective of large cardamom yield decline due to pollinator deficiency in Sikkim (Sinh & Shivanna 2007), till date there exists no systematic study on the range of pollinators for SMO. This study aims to bridge this gap especially when a large proportion of farmers are dependent on the SMO for cash income.

Our study area spanned the East, West and South districts of Sikkim. The southern part of the state, which lies in the altitude range of 600–1,500 m provides an ideal climate for SMO cultivation (DHCCD 2015). Data was collected across 72 SMO orchards from 2011 to 2013. These orange orchards were selected within an altitudinal gradient of 700–1,452 m and were spread across 316km² (Fig. 1). Pollinator visitation: At each site, 150 flowers were tagged and observed from 08.00–17.00 h to record insect species that visit them. Intra-floral foraging behavior of each insect species was carefully observed to note whether it is a pollinator or a forager. SMO bear self-fertile, bisexual flowers and pollen movement is facilitated by pollinators. Transparent plastic bags were used to trap insects visiting the flowers to avoid any fruit loss during their collection. Collected samples were preserved in 70% ethanol and subsequently identified in the laboratory. Insects which were not seen touching the flower reproductive parts were not collected for identification.

We recorded 24 species of insects during the study period (2011–2013). Common Honey Bee *Apis cerana* was the most dominant pollinator followed by hoverflies belonging to eight genera, namely, *Episyrphus* sp., *Melanostoma* sp., *Ischiodon* sp., *Eristalis* sp., *Eristolinus* sp., *Scaeva* sp., *Episyrphus* sp., and *Eupeodes* sp. (Image 1,2). This was followed by stingless bees (Hymenoptera), seed bug (Hemiptera), and beetles (Coleoptera) that were sparse visitors. Recorded insects were both pollen and nectar feeders. Bees (Hymenoptera) and hoverflies (Diptera) visited flowers in groups while most of the...
beetles and seed bugs visited individually. All the insects landed on the petal and foraged for pollen placed on top of the flower and nectar at the flower base. In this process all the insects invariably touch both anther and stigma of SMO flower. An insect visitor was called a pollinator when the ventral side of insect’s body containing pollen load touched the reproductive part of flowers.

SMO is an evergreen plant showing flowering response to early monsoon shower starting in the mid of February. Flowering period lasts for a month, from late February to early April. Orchards in the lower altitude starts flowering earlier followed by orchards in the higher altitudes. Flowers are white in colour with strong scent attracting a range of insects for pollination. Highlighting the importance of pollinators of the mandarin orange, in a study conducted by the International Center for Integrated Mountain Development (2003), pollination was seen to increase the yield of mandarin orange by four times compared to pollinator excluded flowers. Honey bee (Apis sp.) has been reported as a major pollinator of different varieties of Citrus sp. from across the world, for example, Mandarin orange Citrus reticulata in Nepal is pollinated by A. cerana, A. dorsata, A. florea, and A. mellifera (International Center for Integrated Mountain Development 2003). Kinnow Citrus reticulata, a hybrid between mandarin orange and sweet lime, was reported to be pollinated by A. dorsata and A. florea in Pakistan (Manzoorul-Haq et al. 1978). Results of our study show only A. cerana visited mandarin orange flowers, while A. dorsata or A. florea, which were recorded in other studies, were not observed even outside our experiment sites during the study period. Hoverflies, although not reported as pollinators of mandarin oranges earlier, are known to pollinate rapeseed oil (Jauker & Wolters 2008), apple (Solomon & Kendall 1970), and strawberries (Kendall et al. 1971). Both bees and flies visited flowers in groups and visited more than one flower at a time, possibly aiding in cross/sexual pollination (Raju et al. 2012). Visits by other taxa such as butterflies, stingless bees, and beetles to orange flowers were less in comparison to bees and flies. However, the importance of these wild pollinators in sustaining pollination of SMO needs further exploration.

Figure 1. Location of orchards (in red dots) within the northeastern Indian state of Sikkim.
Table 1. Pollinators of Sikkim Mandarin Orange.

<table>
<thead>
<tr>
<th>Order</th>
<th>Family</th>
<th>Sub family</th>
<th>Genus</th>
<th>Species</th>
<th>Altitude range</th>
<th>Forage collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coleoptera</td>
<td>Coccinellidae</td>
<td>Coccinellidae</td>
<td>Oenopia</td>
<td>kirbyi (Mulsant)</td>
<td>700–1400</td>
</tr>
<tr>
<td>2</td>
<td>Scarabaeidae</td>
<td>Rutelinae</td>
<td>Anomala</td>
<td>sp.</td>
<td>700–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>3</td>
<td>Scarabaeidae</td>
<td>Citoniinae</td>
<td>Clitenia</td>
<td>sp.</td>
<td>700–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>4</td>
<td>Chrysomelidae</td>
<td>Eumolpinae</td>
<td>Chrysonopa</td>
<td>sp.</td>
<td>700–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>5</td>
<td>Chrysomelidae</td>
<td>Galericinae</td>
<td>Galericini</td>
<td>sp.</td>
<td>700–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>6</td>
<td>Diptera</td>
<td>Calliphoridae</td>
<td>Chrysomyinae</td>
<td>Chrysomya</td>
<td>sp.</td>
<td>1000–1400</td>
</tr>
<tr>
<td>7</td>
<td>Rhiniidae</td>
<td>Rhiniinae</td>
<td>Rhinia</td>
<td>sp.</td>
<td>0800–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>8</td>
<td>Sarcophagidae</td>
<td>Paramacronychinae</td>
<td>Wohlfartia</td>
<td>sp.</td>
<td>0800–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>9</td>
<td>Syrphidae</td>
<td>Syrphinae</td>
<td>Episyrphus</td>
<td>sp.</td>
<td>0800–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>10</td>
<td>Syrphidae</td>
<td>Syrphinae</td>
<td>Melanostoma</td>
<td>sp.</td>
<td>900–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>11</td>
<td>Syrphidae</td>
<td>Syrphinae</td>
<td>Ischiodon</td>
<td>scutellaris (Fabricius)</td>
<td>0800–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>12</td>
<td>Syrphidae</td>
<td>Eristalinae</td>
<td>Eristalis</td>
<td>tenax (Linnaeus)</td>
<td>0800–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>13</td>
<td>Syrphidae</td>
<td>Syrphinae</td>
<td>Scybea</td>
<td>pyrostri (Linnaeus)</td>
<td>900–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>14</td>
<td>Syrphidae</td>
<td>Syrphinae</td>
<td>Eupoedes</td>
<td>confarans (Wiedemann)</td>
<td>900–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>15</td>
<td>Syrphidae</td>
<td>Eristalinae</td>
<td>Eristalinus</td>
<td>taienops (Wiedemann)</td>
<td>900–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>16</td>
<td>Syrphidae</td>
<td>Syrphinae</td>
<td>Episyrphus</td>
<td>Viridaureus</td>
<td>900–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>17</td>
<td>Syrphidae</td>
<td>Eristalinae</td>
<td>Eristalis</td>
<td>basifemorata (Brunetti)</td>
<td>700–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>18</td>
<td>Hemiptera</td>
<td>Lygaeidae</td>
<td>Lygaeinae</td>
<td>Spilostethus</td>
<td>pandurus (Scopoli)</td>
<td>700–1400</td>
</tr>
<tr>
<td>19</td>
<td>Lygaeidae</td>
<td>Lygaeinae</td>
<td>Graptopstethus</td>
<td>incertus (Walker)</td>
<td>700–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>20</td>
<td>Largidae</td>
<td>Physopeltinae</td>
<td>Physopelta</td>
<td>gutta gutta (Burmeister)</td>
<td>700–1400</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>21</td>
<td>Hymenoptera</td>
<td>Halictidae</td>
<td>Halictinae</td>
<td>Seradonia sp.</td>
<td>sp.</td>
<td>700–1200</td>
</tr>
<tr>
<td>22</td>
<td>Halictidae</td>
<td>Halictinae</td>
<td>Lasiusglossum</td>
<td>sp.</td>
<td>700–1200</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>23</td>
<td>Apidae</td>
<td>Apinae</td>
<td>Apis</td>
<td>cerana</td>
<td>700–1500</td>
<td>nectar + pollen</td>
</tr>
<tr>
<td>24</td>
<td>Apidae</td>
<td>Apinae</td>
<td>Tetragonula</td>
<td>sp.</td>
<td>800–1200</td>
<td>nectar + pollen</td>
</tr>
</tbody>
</table>

Image 1. *Apis cerana* pollinating Sikkim Mandarin Orange flower.

Image 2. *Apis cerana* and *Eristalis* sp. visiting Sikkim Mandarin Orange flowers.
References


Factors affecting diversity and distribution of threatened birds in Chitwan National Park, Nepal
— Jagan Nath Adhikari, Bishnu Prasad Bhattrai & Tej Bahadur Thapa, Pp. 13511–13522

Encounter rates and group sizes of diurnal primate species of Mole National Park, Ghana
— Edward Debrah Wiafe, Pp. 13523–13530

Estimating Leopard Panthera pardus fusca (Mammalia: Carnivora: Felidae) abundance in Kuno Wildlife Sanctuary, Madhya Pradesh, India

Food composition of Indian Eagle Owl Bubo bengalensis Franklin (Aves: Strigiformes: Strigidae) from Tiruchirappalli District, Tamil Nadu, India
— Tamliselvan Siva, Periyasamy Neelanarayanan & Vaidyula Vasudeva Rao, Pp. 13545–13551

Sunda Pangolin Manis javanica (Mammalia: Pholidota: Manidae) of Gaya Island, Sabah
— Jephte Sompud, Cynthia Boon Sompud, Kurtis Jai-Chyi Pei, Nick Ching-Min Sun, Rimi Repin & Fred Tuh, Pp. 13552–13556

Distribution and morphometric measurements of Blanford’s Fox Vulpes cana (Mammalia: Canidae) of the Kingdom of Saudi Arabia
— Abdulhadi Aloufi & Ehab Eid, Pp. 13557–13562

Sebaceous gland adenoma in a free-ranging Baird’s Tapir Tapirus bairdii (Tapiridae: Perissodactyla)

Recent records of the Banded Racer Argyrodon fasciolata (Shaw, 1802) (Reptilia: Squamata: Colubridae) from southern Coromandel Coast, peninsular India
— Janani Sagadevan, Sumaithangi Rajagopalan Ganesh, Nitesh Anandan & Raveen Rajasingh, Pp. 13567–13572

A new species of Simulium (Simulium) (Diptera: Simuliidae), with keys to S. striatum species-group from India
— Sankarappan Anbalagan, Suryiyandri Vijayan, Chellapandian Balachandran & Sundaram Dinakaran, Pp. 13573–13578

New host records of polyphagous Lepidoptera on Ban Oak Quercus leucotrichophora A. Camus (Fabaceae) in the Garhwal Himalaya, India
— Arun Pratap Singh, Kalpana Bahuguna & Gaurav Chand Ramola, Pp. 13579–13591

A preliminary study of the hawkmoth diversity (Lepidoptera: Sphingidae) of Kanyakumari District, Tamil Nadu, India
— Geetha Iyer & Ian James Kitching, Pp. 13592–13604

Colamus pseudoerectus (Areaceae), a new species from the eastern Himalaya, India
— Sujit Mondal, Shyamal K. Basu & Monoranjan Chowdhury, Pp. 13605–13610

Weed diversity in rice crop fields of Fatehgarh Sahib District, Punjab, India
— Yadavinder Singh & Rai Singh, Pp. 13611–13616

Observations on the female flowers and fruiting of Tape Grass Enhalus acoroides from South Andaman Islands, India
— Vardhan Patankar, Tanmay Wagh & Zoya Tyabji, Pp. 13617–13621

First records of Agnidra vinacea (Moore, 1879) (Lepidoptera: Drepanidae: Drepaninae) from the western Himalaya, extending its known range westwards
— Pritha Dey & Sanjay Sondhi, Pp. 13622–13624

Pollinators of Sikkim Mandarin Orange Citrus reticulata (Sapindales: Rutaceae)
— Urbashi Pradhan & M. Soubadra Devy, Pp. 13625–13628

A holistic look on birds in urban areas
— S. Suresh Ramanan & Lalit Upadhyay, Pp. 13629–13630