

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

Journal of Threatened Taxa

Building evidence for conservation globally

www.threatenedtaxa.org ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

SMALL WILD CATS SPECIAL ISSUE

COMMUNICATION SMALL CAT SURVEYS: 10 YEARS OF DATA FROM CENTRAL KALIMANTAN, INDONESIAN BORNEO

Karen Anne Jeffers, Adul & Susan Mary Cheyne

12 March 2019 | Vol. 11 | No. 4 | Pages: 13478–13491 DOI: 10.11609/jott.4466.11.4.13478-13491

For Focus, Scope, Aims, Policies, and Guidelines visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0 For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2 For reprints, contact <ravi@threatenedtaxa.org>

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Partner

Member

Publisher & Host

ZOOREACH

SMALL CAT SURVEYS: 10 YEARS OF DATA FROM CENTRAL KALIMANTAN, INDONESIAN BORNEO

Karen Anne Jeffers 10, Adul 20 & Susan Mary Cheyne 30

 ¹⁻³ Borneo Nature Foundation, Jalan Bukit Raya Induk No. 17, Palangka Raya, 73112, Central Kalimantan, Indonesia.
 ³ Oxford Brookes University, Department of Social Sciences, Faculty of Humanities and Social Sciences, Gibbs Building, Headington Campus, Oxford, OX3 0BP, UK.

¹ k.jeffers@borneonature.org, ² adul.outrop@gmail.com, ³ s.cheyne@borneonature.org (corresponding author)

Abstract: We present an update on the photographic detections from camera traps and the activity patterns of Borneo's four small cats, namely, Sunda Leopard Cat *Prionailurus javanensis*, Flat-headed Cat *P. planiceps*, Marbled Cat *Pardofelis marmorata*, and Bay Cat *Catopuma badia*, at two sites in Central Kalimantan, Indonesia. Camera trap survey data of 10 years (2008–2018) from the first site in Sebangau provide details about the temporal partitioning of these small cats from each other but overlap with Sunda Clouded Leopard *Neofelis diardi*. The activity of Flat-headed Cat was higher after midnight and that of Leopard Cat at night with no clear preference before or after midnight. The Marbled Cat is predominantly diurnal, but the remaining three cats have flexible activity periods. While limited data are available from Rungan, the second site, we confirmed the presence of all four small cat species found on Borneo, though we have insufficient data to comment on the Bay Cat. The cat sightings, however, are intermittent and may reflect the unprotected status of this forest. Leopard Cats appear relatively unaffected by habitat disturbance based on encounter rates on camera traps. Conservationists, both NGOs and the government, must pay particular attention to specialists like Flat-headed Cats and Bay Cats when assessing habitat suitability for long-term cat conservation.

Keywords: Activity patterns, camera traps, *Catopuma badia*, diversity, felids, fire, peat-swamp forest, *Pardofelis marmorata*, *Prionailurus javanensis*, *Prionailurus planiceps*.

Bahasa Indonesia Abstract: Kami menyajikan pembaruan pada pendeteksian fotografi dari perangkap kamera dan pola aktivitas empat kucing kecil Borneo yaitu Kucing Kuwuk *Prionailurus bengalensis*, Kucing Batu *Pardofelis marmorata*, Kucing Tandang *Prionailurus planiceps* dan Kucing Merah Cat *Catopuma badia* di dua lokasi di Kalimantan Tengah, Indonesia. Data survei perangkap kamera 10 tahun (2008–2018) dari situs pertama di Sebangau memberikan rincian tentang partisi sementara kucing kecil ini dari satu sama lain tetapi tumpang tindih dengan Macan Dahan *Neofelis diardi*. Aktivitas kucing kepala datar lebih tinggi setelah tengah malam, dan Kucing Kuwuk di malam hari tanpa preferensi yang jelas sebelum atau setelah tengah malam. Kucing Batu didominasi diurnal, tetapi ketiga kucing memiliki periode aktivitas yang fileksibel. Sementara data terbatas tersedia dari situs kedua (Rungan), kami telah mengkonfirmasi keberadaan keempat spesies kucing berselang-seling dan mungkin mencerminkan status hutan yang tidak terlindung. Kucing Kuwuk kembali muncul relatif tidak terpengaruh oleh gangguan habitat berdasarkan pada tingkat pertemuan pada perangkap kamera. Konservasionis (LSM dan pemerintah) harus memberi perhatian khusus kepada spesialis misalnya Kucing Tandang dan Kucing Merah ketika menilai kecocokan habitat untuk konservasi kucing jangka panjang.

DOI: https://doi.org/10.11609/jott.4466.11.4.13478-13491 | ZooBank: urn:lsid:zoobank.org:pub:0EA7C81F-E24F-4E17-B8F8-E45620396EEB

Editor: Angie Appel, Wild Cat Network, Germany.

Date of publication: 12 March 2019 (online & print)

Manuscript details: #4466 | Received 02 August 2018 | Final received 04 February 2019 | Finally accepted 27 February 2019

Citation: Jeffers, K.A., Adul & S.M. Cheyne (2019). Small cat surveys: 10 years of data from Central Kalimantan, Indonesian Borneo. *Journal of Threatened Taxa* 11(4): 13478–13491; https://doi.org/10.11609/jott.4466.11.4.13478-13491

Copyright: [©] Jeffers et al. 2019. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by adequate credit to the author(s) and the source of publication.

Funding: SMC was funded through a grant to David W. Macdonald from the Kaplan family and by the Clouded Leopard Project. SMC and DWM's work on Bornean felids is part of the WildCRU/Panthera collaboration and was carried out within the BNF-CIMTROP multi-disciplinary research project in the northern Sabangau forest, Central Kalimantan, Indonesia. SMC gratefully thanks the Centre for the International Cooperation in Management of Tropical Peatlands (CIMTROP) for sponsoring her research and providing invaluable logistical support. We gratefully acknowledge the contribution of all the researchers who assisted with the project. SMC and KAJ thanks the Indonesian Ministry for Science and Technology for providing research permissions for this work.

Competing interests: The authors declare no competing interests.

For Author details & Author contribution see end of this article.

Acknowledgements: We thank CIMTROP, University of Palangka Raya and University Muhammadiyah Palangka Raya, for their collaboration in making this work possible. We thank the Indonesian Ministry of Science and Technology (RISTEK) and Director General of Nature Conservation (PHKA) for permission to carry out research in Indonesia. The Robertson Foundation provided funding for the majority of the survey work presented here. Additional funding for different stages of this work was kindly provided by Panthera, The Clouded Leopard Project of Point Defiance Zoo and Aquarium, and Fresno Chafee Zoo USA. Three anonymous reviewers provided invaluable comments on the previous drafts of this manuscript.

COMMUNICATION

ISSN 0974-7907 (Online) ISSN 0974-7893 (Print)

13478

INTRODUCTION

In the absence of Tiger *Panthera tigris*, Borneo's cats represent a fascinating guild, and all are in need of conservation attention. Five species occur on Borneo: the Sunda Clouded Leopard *Neofelis diardi* (Endangered (EN) on the IUCN Red List; Hearn et al. 2016c), the Bay Cat *Catopuma badia* (EN and endemic to Borneo; Hearn et al. 2016a), the Flat-headed Cat *Prionailurus planiceps* (EN; Wilting et al. 2016a), the Marbled Cat *Pardofelis marmorata* (Near Threatened; Ross et al. 2016a), and the Sunda Leopard Cat *Prionailurus javanensis* (Least Concern; Ross et al. 2016). They are all protected under Indonesian law (P.20/MENLHK/SETJEN/KUM.1/6/2018). As they are rare and elusive, it is difficult to study them in the wild. Thus, there is limited knowledge about their ecology despite increased scientific interest.

Since 2008, Borneo Nature Foundation (BNF) and University of Palangka Raya, Centre for the International Management of Tropical Peatlands (UPR-CIMTROP), have been conducting long-term monitoring of the Sunda Clouded Leopard Neofelis diardi in Indonesia and, specifically, N. d. borneensis in Central Kalimantan. During this time, we also opportunistically obtained images of three of the four small cats in the Sebangau catchment area. Given the disturbed mosaic nature of Sebangau, we also hope to determine which areas are unsuitable for small cats, either due to habitat changes and/or due to human disturbance. Live Leopard Cats are more common in Kalimantan markets for sale as pets than Sunda Clouded Leopards, and their skins are more often found in homes (Rabinowitz et al. 1987). Far less is known about small cat movements, habitat preferences, seasonal movements, breeding patterns, and effects of anthropogenic disturbance across their range. These data are particularly lacking from tropical peat-swamp forests. We present here updated information on temporal activity pattern of four small cats from the Central Kalimantan region of Indonesia.

STUDY AREAS

The Sebangau catchment, Central Kalimantan, Indonesia (Fig. 1), is a peat-swamp forest (mixed-swamp forest sub-type) covering an area of ~5,600km². This study took place in the 50km² research forest located in the northeast. The area was logged under a concession system between 1991 and 1997 followed by illegal logging between 1997 and 2004. The site is at an altitude of about 10m. The area was significantly affected by the forest fires that impacted Indonesia in 2015.

The second research site was established in 2016

in the Rungan Forest, which covers about 1,440km² between the Kahayan and Rungan rivers. The forest is a lowland forest mosaic comprising peat-swamp, 'kerangas' (heathland) and the dominant canopy trees are *Palaquium* sp. (nyatoh), *Syzygium* sp. (jambu) and *Shorea* (meranti), (Dipterocarpaceae family). BNF and the Wildlife Conservation Research Unit (WildCRU) of the University of Oxford initiated the Sebangau Felid Project in May 2008, and BNF initiated the Rungan work in 2016.

MATERIAL AND METHODS

Since 2008, a total of 210 camera locations were surveyed across both forest areas with an average of 30 units in each forest area at any one time. Between 2008 and 2012, cameras were set up in pairs in Sebangau and subsequently as single units. In the Rungan site, cameras were all set up as single units. Cameras were set in a stratified random survey design. Cameras were placed 500m to 1,000m apart and were in each location for a minimum of six months; some cameras were in the same location since May 2008. Locations were selected to cover a range of habitats and disturbances within the forests, avoiding streams and slopes wherever present. Camera traps were placed along established human-made trails (more than four years old) and, where possible, watering areas, to maximise the success rate of photographic captures. A combination of camera models were used, including Cuddeback Expert®, Cuddeback Capture IR® (Cuddeback Digital, Non-Typical Inc, WI, USA) Maginon, Crenova, and Bushnell. Cameras were checked every 40 days when batteries were changed and SD cards exchanged. Data were managed in a custom Microsoft Access database. Active behaviour times were calculated using the kernel density method ('href' bandwidth for kernel smoothing; Ridout & Linkie 2009; Meredith & Ridout 2016) to account for average dawn and dusk times in the sites, which are situated almost on the equator (for more information on the Sebangau study site, see Cheyne & Macdonald 2011; Cheyne et al. 2016b). Detection rate was estimated as number of detections/100 trap nights. Weather data were collected daily at each research site and fire data was obtained from the Indonesian Agency of Meteorology, Climatology, and Geophysics. A 30-min interval between photos of the same species was used to determine if photos of were an independent event at the same location and date.

Figure 1. Study sites: circle - Sebangau; star - Rungan.

RESULTS

The number of camera trap (CT) stations at each site varied annually due to broken units (Table 1).

Detailed descriptions of CT locations are in Appendices 1 & 2, including descriptions of the microhabitats, number of trap nights, number of detections, and careful descriptions of the setup around the CT stations. CTs were placed in different habitats across the two sites (Table 2).

The small cats were recorded by 56 of 83 camera traps in Sebangau (67%) and by 16 of 37 camera traps in Rungan (43%) (Table 3).

All small cats in Sebangau were photographed in all main habitat types in the interior forest, <20m from the forest edge and in disturbed areas. All four small cats in Rungan were recorded in the interior forest; only the Flatheaded Cat was recorded near the lake.

Sebangau

Since the cameras were first placed in May 2008, we captured 157 independent images of Sunda Clouded Leopards (Image 1), but only 109 of Sunda Leopard Cats, 54 of Marbled Cats (Image 2), and 33 of Flat-headed Cats (Image 3). Compared to the average detection rates of small cats since the inception of the camera trap study

in 2008, there was a decline in the detections of Marbled Cats and Flat-headed Cats (Fig. 2). From 2014 to July 2018, there was an average of 3.9 independent Marbled Cat images/month (min=0, max=16). No Flat-headed Cats were recorded by camera traps between January 2014 and February 2018 (Fig. 2), which coincided with a significant fire event from September to November 2015.

Of the three small cat species, the Sunda Leopard Cat is predominantly nocturnal with no clear preference for time of night. Flat-headed Cats also showed nocturnal activity but with a slight preference for post-midnight hours. Marbled Cats are strongly diurnal. Interestingly, 65% of 115 nocturnal records (18.00–05.59 h) of Sunda Clouded Leopards were between 01.00h and 05.59h (Fig. 3), thus overlapping with the preferred active time for Flatheaded Cats.

Rungan

Three of the small cats were confirmed in Rungan in the first few months of the study but it took 12 months to confirm the presence of the Flat-headed Cat (Table 4).

Bay Cat

With over eight years of long-term camera trap surveying in the peat-swamp forest of the Sebangau

Table 1. Number of camera trap stations per year in the study site.

Year	Sebangau	Rungan
2008	40	0
2009	40	0
2010	40	0
2011	36	0
2012	34	0
2013	30	0
2014	25	0
2015	30	0
2016	30	36
2017	25	50
2018	28	30

Jeffers et al.

Table 2. Number	r of camera	trap (CT)	locations	at	each	site	(NA -	
habitat type not	present in th	ne study si	te).					

Habitat type	Sebangau	Rungan
Burned area	3	NA
Kerangas/ heath	NA	30
Low interior forest	1	4
Mixed swamp forest	74	3
Tall interior forest	5	NA
Total CT locations	83	37
Total trap nights	65,261	14,642

catchment, the Bay Cat was not detected, and ongoing work suggests that it is not found in peat-swamp forests. The Bay Cat was confirmed in mosaic heath/ peat-swamp forest habitat for the first time (Sastramidjaja et al. 2015; Cheyne et al. 2016a, 2017). Through the use of camera traps, we present new location information on the distribution of Bay Cat in Kalimantan. This new location is approximately 64km southeast outside the range depicted by Hearn et al. (2016a). Our record of Borneo Bay Cat from the new habitat (heath/ peat-swamp forest) warrants further surveys in different habitat types to fully understand Bay Cat distribution and ecologic needs.

DISCUSSION

The small cats are appearing evenly across the habitat types in both Sebangan and Rungan, with the exception of the Bay Cat that likely does not exist in deep ombrogenous peat-swamp forest (Sebangau). Additionally, we have evidence of breeding in Flat-headed Cat and Marbled Cat in Sebangau (images of kittens) (Images 4 & 5).

Flat-headed Cats have a more irregular capture rate and though they are active throughout the day, more captures are obtained at night and therefore they are predominantly nocturnal. Leopard Cats have a more regular capture rate

Table 3. Camera trap (CT) locations with detections and non-detections of small cats with mean occupancy estimates (Ψ) in the study sites. NA indicates occupancy cannot be calculated due to no small cats being photographed at these locations.

	Seba	ingau	Rur	ngan		
	Number of CT locations	Ψ	Number of CT locations	Ψ		
Leopard Cat	20	21.05	10	26.32		
Marbled Cat	20	13.68	2	10.26		
Flat-headed Cat	16	11.58	3	6.50		
Bay Cat	0	0	1	1.28		
No small cats	36	NA	23	NA		

Image 1. Sunda Leopard Cat *Prionailurus javanensis* in Sebangau Forest, Central Kalimantan, Indonesian Borneo. © Borneo Nature Foundation, 28 July 2008.

Image 2. Marbled Cat *Pardofelis marmorata* in Sebangau Forest, Central Kalimantan, Indonesian Borneo. © Borneo Nature Foundation, 20 September 2013.

Jeffers et al.

Image 3. Flat-headed Cat *Prionailurus planiceps* in Sebangau Forest, Central Kalimantan, Indonesian Borneo. © Borneo Nature Foundation, 22 February 2013.

	Jun–Aug 2016	Sep-Nov 2016	Dec 2016–Feb 2017	Mar–May 2017	Jun–Aug 2017	Sep-Nov 2017	Dec 2017–Feb 2018	Mar–May 2018
Flat-headed Cat	0	0	0	0	1	1	0	0
Sunda Leopard Cat	2	2	2	1	0	0	0	0
Marbled Cat	1	4	0	0	1	0	0	0
Bay Cat	1	0	0	0	0	0	0	0

Table 4. Capture rate of small cat species from the inception of the camera trap surveys in Rungan between June 2016 and May 2018.

and appear to be active both during the day and night, though they appear to avoid the hottest time of the day (11.00–13.00 h). Marbled Cats have a regular capture rate with the majority of images taken during the day (05.00–16.00 h), suggesting they are diurnal. There is only one image of a Bay Cat taken at 11.17h. These data are similar to those of Hearn et al. (2018), though these authors did not obtain sufficient images of Flat-headed Cats to make a detailed analysis.

Peat-swamp and associated lowland wetlands are postulated to be an important habitat for Flat-headed Cats (Cheyne et al. 2009; Wilting et al. 2010, 2016b; Cheyne & Macdonald 2011; Adul et al. 2015). Marbled Cats are not believed to frequent roads or plantations (Hearn et al. 2016c) and prefer intact forests, though data are lacking on this cat (Rustam et al. 2016).

Peat-swamp and associated lowland wetlands were

suggested to be poor or marginal habitat for Sunda Leopard Cat (Mohamed et al. 2016), but our work suggests that Sunda Leopard Cat are far more common (Cheyne & Macdonald 2011; Adul et al. 2015; Cheyne et al. 2016b).

The infrequent capture of the small cats in both sites is likely an artefact of the placing of the cameras (\pm 1km apart) to focus on the wide-ranging Sunda Clouded Leopard. By moving the cameras closer (\pm 500m) we hope to determine the population density for the small cats, determine if the Bay Cat is indeed absent from this forest, and to continue our monitoring of the Sunda Clouded Leopard population. The long period of time required to obtain images of small cats, possibly due to the placement of the cameras targeting Sunda Clouded Leopard, highlights the importance of long-term data and monitoring to avoid false-negative presence data. Sunda Leopard Cat is the most commonly recorded species in the

Figure 3. Kernel density estimates of activity patterns of species using alpha of 0.1 smoothing parameter: a - Flat-headed Cat; b - Marbled Cat; c - Sunda Leopard Cat.

study site. Marbled Cat is hard to study and, as many are arboreal, having cameras mainly on the forest floor means we could be missing out on key aspects of their behaviour. Flat-headed Cat is a wetland specialist and prefers forests with water (Wilting et al. 2010). Its diet likely consists of fish, frogs, and small mammals, and it may fill a niche on Borneo filled by the Fishing Cat *Prionailurus viverrinus* elsewhere in Asia (Iwaniuk et al. 2001). Due to this dependence on wetlands, we think that the devastating fires of 2015 may have severely impacted the Flat-headed Cat population, pushing it away from fire-affected areas. Our preliminary results suggest that Flat-headed Cats are returning to these areas, which BNF is actively working to restore. These data could be an artefact of survey effort (a high number of broken cameras) or a genuine reflection of this species behaviour.

Large parts of the peat-swamp are naturally seasonally flooded for up to nine months per year. The flooded nature of Sebangau does not always prevent the animals using the ground; indeed we have evidence of male Orangutans Pongo pygmaeus wading through water (Ancrenaz et al. 2014). Keeping a selection of camera trap locations the same over several months or years allows for variations in detection to be accounted for; given the regular flooding of the forest, it is likely that the wildlife is accustomed to this. We do notice animals using our boardwalks more regularly in the wet season. Peatlands and associated forest fires are a crucial conservation concern in Kalimantan (Gaveau et al. 2016; Miettinen et al. 2017). This is especially true during dry years such as in 2015 when a strong El Niño event led to particularly dry conditions. From August to November of that year, MODIS satellites detected over 50,000 fire hotspots in Kalimantan, 53% of which were on peatland (Gaveau et al. 2016; Miettinen et al. 2017). Since 2006, 17.35% of forest in the core Sebangau research area burned down (9.63% in 2015 alone—5.3km² of 55km²). Of particular threat to the Flat-headed Cat are peat drainage and drying out due to logging canals, the loss of permanent water, and increased hydrologic instability (Page et al. 2009; Vanthomme et al. 2013).

Conservation impact

This work represents the first-ever comprehensive and long-term survey of small cats in Central Kalimantan. There is a severe lack of data on these species in nonprotected or small forest areas that may also contain viable populations. It is crucial to remember that, while these surveys indicate the continued presence of these cats, habitat loss, wildlife trade, and likely presence of populations in non-protected areas means that more work is needed to understand the impacts of anthropogenic activities on these cats. As detailed in Appendix 1, this project provides extensive and detailed data about many wildlife species in Sebangau and Rungan forests in addition to the cats—an additional 7,959 images (2,765 videos) of 74 species. Of these, two are IUCN Red Listed as Critically Endangered, five as Endangered, 14 as Vulnerable, 12 as Near Threatened, and 41 as Least Concern.

Jeffers et al.

Image 4. Flat-headed Cat Prionailurus planiceps kitten

Image 5. Marbled Cat Pardofelis marmorata and kitten

REFERENCES

- Adul, B. Ripoll, S.H. Limin & S.M. Cheyne (2015). Felids of Sebangau: camera trapping to estimate activity patterns and population abundance in Central Kalimantan, Indonesia. *Biodiversitas* 16(2): 151– 155; https://doi.org/10.13057/biodiv/d160208
- Ancrenaz, M., R. Sollmann, E. Meijaard, A.J. Hearn, J. Ross, H. Samejima, B. Loken, S.M. Cheyne, D.J. Stark, P.C. Gardner, B. Goossens, A. Mohamed, T. Bohm, I. Matsuda, M. Nakabayasi, S.K. Lee, H. Bernard, J. Brodie, S. Wich, G. Fredriksson, G. Hanya, M.E. Harrison, T. Kanamori, P. Kretzschmar, D.W. Macdonald, P. Riger, S. Spehar, L.N. Ambu & A. Wilting (2014). Coming down from the trees: is terrestrial activity in Bornean orangutans natural or disturbance driven? *Scientific Reports* 4: 1–5.
- Cheyne, S.M., Adul, F. Veen, J.F. Van, B.R. Capilla, N. Boyd & S. Maimunah (2017). First record of the Bay Cat in mosaic heath/peat-swamp forest, Kalimantan, Indonesia. *Cat News* 65: 48.
- Cheyne, S.M. & D.W. Macdonald (2011). Wild felid diversity and activity patterns in Sabangau peat-swamp forest, Indonesian Borneo. *Oryx* 45(1): 119–124.
- Cheyne, S.M., S. Maimunah & F. van Veen (2016a). Camera traps reveal wonders in Ironwood Forests. *Peatlands International* 3: 14–15.
- Cheyne, S.M., H. Morrogh-Bernard & D.W. Macdonald (2009). First Flatheaded Cat from Sabangau peat-swamp forest, Indonesian Borneo. *Cat News* 51: 18.
- Cheyne, S.M., W.J. Sastramidjaja, Muhalir, Y. Rayadin & D.W. Macdonald (2016b). Mammalian communities as indicators of disturbance across Indonesian Borneo. *Global Ecology and Conservation* 7: 157–173; https://doi.org/10.1016/j.gecco.2016.06.002
- Gaveau, D.L.A., D. Sheil, Husnayaen, M.A. Salim, S. Arjasakusuma, M. Ancrenaz, P. Pacheco & E. Meijaard (2016). Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. *Scientific Reports* 6: 32017.
- Hearn, A., J. Brodie, S. Cheyne, B. Loken, J. Ross & A. Wilting (2016a). Catopuma badia. In: The IUCN Red List of Threatened Species: e.T4037A112910221. Accessed on 14 October 2018. https://doi. org/10.2305/IUCN.UK.2016-1.RLTS.T4037A50650716.en
- Hearn, A.J., S.A. Cushman, J. Ross, B. Goossens, L.T.B. Hunter & D.W. Macdonald (2018). Spatio-temporal ecology of sympatric felids on Borneo. Evidence for resource partitioning? *PLoS One* 13(7): e0200828.
- Hearn, A.J., J. Ross, H. Bernard, S.A. Bakar, L.T.B. Hunter & D.W. Macdonald (2016b). The first estimates of Marbled Cat Pardofelis marmorata population density from Bornean primary and selectively logged forest. *PLoS One* 11(3): e0151046.
- Hearn, A., J. Ross, J. Brodie, S. Cheyne, I.A. Haidir, B. Loken, J. Mathai, A. Wilting & J. McCarthy (2016c). Neofelis diardi. In: The IUCN Red List of Threatened Species: e.T136603A97212874. Accessed on 14 October 2018. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS. T136603A50664601.en
- Iwaniuk, A.N., W.G. Blankstein & I.Q. Whishaw (2001). Observations of the feeding behaviour of Fishing Cats (*Prionailurus viverrinus*). *Mammalia* 65(1): 89–91.
- Meredith, M. & M. Ridout (2016). Overview of the overlap package. In: R Development Core Team, R Package. 3.3.1. Edition. R Foundation for Statistical Computing, Vienna, Austria; https://cran.r-project.org/web/ packages/overlap/vignettes/overlap.pdf
- Miettinen, J., C. Shi & S. Liew (2017). Fire distribution in peninsular Malaysia, Sumatra and Borneo in 2015 with special emphasis on peatland fires. *Environmental Management* 60(4): 747–757.

- Mohamed, A., J. Ross, A.J. Hearn, S.M. Cheyne, R. Alfred, H. Bernard, R. Boonratana, H. Samejima, M. Heydon, D.M. Augeri, J.F. Brodie, A. Giordano, G. Fredriksson, J. Hall, B. Loken, Y. Nakashima, J.D. Pilgrim, Rustam, G. Semiadi, T. van Berkel, J. Hon, N.T.L. Lim, A.J. Marshall, J. Mathai, D.W. Macdonald, C. Breitenmoser-Würsten, S. Kramer-Schadt & A. Wilting (2016). Predicted distribution of the Leopard Cat *Prionailurus bengalensis* (Mammalia: Carnivora: Felidae) on Borneo. *Raffles Bulletin of Zoology, Supplement* 33: 180–185.
- Page, S., A. Hoscilo, H. Wosten, J. Jauhiainen, M. Silvius, J. Rieley, H. Ritzema, K. Tansey, L. Graham, H. Vasander & S. Limin (2009). Restoration ecology of lowland tropical peatlands in southeast Asia: current knowledge and future research directions. *Ecosystems* 12(6): 888–905.
- Rabinowitz, A., P. Andau & P.P.K. Chai (1987). The Clouded Leopard in Malaysian Borneo. *Oryx* 21: 107–111.
- Ridout, M. & M. Linkie (2009). Estimating overlap of daily activity patterns from camera trap data. *Journal of Agricultural, Biological, and Environmental Statistics* 14(3): 322–337.
- Ross, J., J. Brodie, S. Cheyne, A. Datta, A. Hearn, B. Loken, A. Lynam, J. McCarthy, C. Phan, A. Rasphone, P. Singh & A. Wilting (2016a). *Pardofelis marmorata*. In: The IUCN Red List of Threatened Species: e.T16218A97164299. Accessed on 14 October 2018. https://doi. org/10.2305/IUCN.UK.2016-1.RLTS.T16218A97164299.en
- Ross, J., J. Brodie, S. Cheyne, A. Hearn, M. Izawa, B. Loken, A. Lynam, J. McCarthy, S. Mukherjee, C. Phan, A. Rasphone & A. Wilting (2016b). *Prionailurus bengalensis*. In: The IUCN Red List of Threatened Species: e.T18146A50661611. Accessed on 14 October 2018. https://doi. org/10.2305/IUCN.UK.2015-4.RLTS.T18146A50661611.en
- Rustam, R., A.J. Hearn, J. Ross, R. Alfred, H. Samejima, M. Heydon, S.M. Cheyne, J.F. Brodie, A.J. Giordano, H. Bernard, R. Boonratana, B. Loken, A. Mohamed, M.-A. Jayasilan, D.M. Augeri, J. Eaton, J. Hon, A.J. Marshall, J. Mathai, G. Semiadi, D.W. Macdonald, C. Breitenmoser-Würsten, S. Kramer-Schadt & A. Wilting (2016). Predicted distribution of the Marbled Cat Pardofelis marmorata (Mammalia: Carnivora: Felidae) on Borneo. Raffles Bulletin of Zoology, Supplement 33: 157–164.
- Sastramidjaja, W.J., S.M. Cheyne, B. Loken & D.W. Macdonald (2015). The Bay Cat in Kalimantan, new information from recent sightings. *Cat News* 62: 10–12.
- Vanthomme, H., J. Kolowski, L. Korte & A. Alonso (2013). Distribution of a community of mammals in relation to roads and other human disturbances in Gabon, central Africa. *Conservation Biology* 27(2): 281–291.
- Wilting, A., J. Brodie, S. Cheyne, A. Hearn, A. Lynam, J. Mathai, J. McCarthy, E. Meijaard, A. Mohamed, J. Ross, S. Sunarto & C. Traeholt (2016a). Prionailurus planiceps. In: The IUCN Red List of Threatened Species: e.T18148A50662095. Accessed on 14 October 2018. https:// doi.org/10.2305/IUCN.UK.2015-2.RLTS.T18148A50662095.en
- Wilting, A., S.M. Cheyne, A. Mohamed, A.J. Hearn, J. Ross, H. Samejima,
 B. Boonratana, A.J. Marshall, J.F. Brodie, A. Giordiano, J.A. Eaton,
 J. Hall, J.D. Pilgrim, M. Heydon, G. Semiadi, E. Meijaard, D.W.
 Macdonald, C. Breitenmoser-Würsten & S. Kramer-Schadt (2016b).
 Predicted distribution of the Flat-headed Cat *Prionailurus planiceps* (Mammalia: Carnivora: Felidae) on Borneo. *Raffles Bulletin of Zoology, Supplement* 33: 173–179.
- Wilting, A., A. Cord, A.J. Hearn, D. Hesse, A. Mohamed, C. Traeholdt, S.M. Cheyne, S. Sunarto, M.-A. Jayasilan, J. Ross, A.C. Shapiro, S. Dech, C. Breitenmoser, J.W. Duckworth, J. Sanderson & J. Hofer (2010). Modelling the species distribution of Flat-Headed Cats (*Prionailurus planiceps*), an Endangered south-east Asian small felid. *PLoS One* 5(3): e9612.

Appendix 1. Summary of camera trap (CT) locations in Sebangau, Central Kalimantan Indonesian Borneo. LC - Leopard Cat, MC - Marbled Cat, FHC - Flat-headed Cat.

No. of CT days	Location of camera	Habitat class	Additional habitat information	Altitude (m)	LC	мс	FhC
372	T 1.3E x TY 2015	Burned area	Interior forest	16–20	х		
375	T 1B East 975m 2015	Burned area	Forest edge (<20m)	16–20		х	
180	T SC East x TY 2015	Burned area	Forest edge (<20m)	16–20	х		
1475	JE1	Mixed swamp forest	Forest edge (<20m)	16–20			х
2399	Km2 x Railway	Mixed swamp forest	Interior forest	16–20			
2399	Km3 x Railway	Mixed swamp forest	Interior forest	16–20	х		
2399	Km4 x Railway	Mixed swamp forest	Interior forest	16–20	х		
2447	Old Railway 400m	Mixed swamp forest	Disturbed logging railway	16–20		х	x
241	Old Railway x T2E	Mixed swamp forest	Disturbed logging railway	16–20			
724	Old Railway x TX	Mixed swamp forest	Disturbed logging railway	16–20		х	
849	OR x T0.8E 2013	Mixed swamp forest	Disturbed logging railway	16–20			
346	OR1150m	Mixed swamp forest	Disturbed logging railway	16–20			
382	Ottercam T1B Canal	Mixed swamp forest	Interior forest	16–20			
375	P.Jelotung x TD 2015	Mixed swamp forest	Interior forest	16–20		х	х
52	Railway 1450m	Mixed swamp forest	Disturbed logging railway	16–20			
835	Secret Transect	Mixed swamp forest	Forest edge (<20m)	16–20		х	
262	T 0.4 East End 2015	Mixed swamp forest	Interior forest	16–20		х	
740	T 0.4 X TD 2015	Mixed swamp forest	Interior forest	16–20	х		
374	T 0.8 x TB 2015	Mixed swamp forest	Interior forest	16–20	х	х	
465	T 0.8 x TE 2015	Mixed swamp forest	Interior forest	16–20	х		x
372	T 0.8E x ORW 2015	Mixed swamp forest	Interior forest	16–20			
2395	T 1.6 x P.owa-owa 2015	Mixed swamp forest	Interior forest	16–20		х	х
436	Т 1.6 х Т Е	Mixed swamp forest	Interior forest	16–20		х	
372	T 1.6E x TW 2015	Mixed swamp forest	Interior forest	16–20		х	
375	T 16 x TB 2015	Mixed swamp forest	Interior forest	16–20			
375	T 1A x Railway 2015	Mixed swamp forest	Disturbed logging railway	16–20			
375	T 2 700m 2015	Mixed swamp forest	Interior forest	16–20		х	
375	T 2 x TE 2015	Mixed swamp forest	Interior forest	16–20			
372	T 2E x ORW 2015	Mixed swamp forest	Disturbed logging railway	16–20			x
372	T 2E x TX 2015	Mixed swamp forest	Interior forest	16–20			
649	T 2km 700m	Mixed swamp forest	Interior forest	16–20			
2450	T CC 25m di atas pohon	Mixed swamp forest	Canopy 10m	10	х		
802	T DD 400m	Mixed swamp forest	Forest edge (<20m)	16-20	х		
248	T FF 125m 2015	Mixed swamp forest	Forest edge (<20m)	16–20	х		х
261	T SC 1412m 2015	Mixed swamp forest	Forest edge (<20m)	16–20			
64	T SC 530m 2016	Mixed swamp forest	Forest edge (<20m)	16–20			
965	T SC 610m 2015	Mixed swamp forest	Forest edge (<20m)	16–20			х
841	T SC East 275m	Mixed swamp forest	Forest edge (<20m)	16–20		Х	
935	T SC East 275m 2015	Mixed swamp forest	Forest edge (<20m)	16–20			x
843	T.Secret 1412m	Mixed swamp forest	Forest edge (<20m)	16–20		х	
880	T.Secret 610m	Mixed swamp forest	Forest edge (<20m)	16–20		Х	
566	T0 950m di atas pohon	Mixed swamp forest	Canopy 10m	10		Х	
436	T0 x T F	Mixed swamp forest	Interior forest	16-20		х	

No. of CT days	Location of camera	Habitat class	Additional habitat information	Altitude (m)	LC	мс	FhC
2154	T0 x TC	Mixed swamp forest	Interior forest	16–20			х
907	T0 x TC 2013	Mixed swamp forest	Interior forest	16–20	х		
907	T0 x TG 2013	Mixed swamp forest	Interior forest	16–20			х
437	T0 x TH	Mixed swamp forest	Interior forest	16–20			х
379	T0.4E END	Mixed swamp forest	Interior forest	16–20			
904	T0.8 x TG 2013	Mixed swamp forest	Interior forest	16–20			х
427	T0.8 x THH	Mixed swamp forest	Interior forest	16–20	х		
2154	T0.8E x TX	Mixed swamp forest	Interior forest	16–20			
616	T0.8E x TY	Mixed swamp forest	Interior forest	16–20			
841	T1.3E x TY 2013	Mixed swamp forest	Interior forest	16–20		х	
55	T1.6 375m	Mixed swamp forest	Interior forest	16–20	х		
2395	T1.6 x Pondok Owa-Owa	Mixed swamp forest	Interior forest	16–20		х	х
2395	T1.6 x Railway	Mixed swamp forest	Interior forest	16–20			
881	T1.6 x TC 2013	Mixed swamp forest	Interior forest	16–20			
435	T1.6E x TZ	Mixed swamp forest	Interior forest	16–20		х	
2395	T1A x Railway	Mixed swamp forest	Interior forest	16–20	х		
436	T1A x TD	Mixed swamp forest	Interior forest	16–20			
83	T1B x Railway	Mixed swamp forest	Interior forest	16–20			
649	T2 700m 2013	Mixed swamp forest	Interior forest	16–20			
5	T2 x TA	Mixed swamp forest	Interior forest	16–20			
2446	T2 x TB	Mixed swamp forest	Interior forest	16–20			
699	T2 x TD	Mixed swamp forest	Interior forest	16–20	х		
62	T2 x THH	Mixed swamp forest	Interior forest	16–20			
905	T2E x OR 2013	Mixed swamp forest	Interior forest	16–20			
435	T2E x TY	Mixed swamp forest	Interior forest	16–20			
2450	TD x Jelutong Pondok	Mixed swamp forest	Interior forest	16–20		х	х
1007	Tower Path	Mixed swamp forest	Interior forest	16–20	х		
260	TREE Railway 1350m 2015	Mixed swamp forest	Canopy 10m	10			
258	TREE T 0.8 412m 2015	Mixed swamp forest	Canopy 10m	10			
116	TREE T 0.8E x TX 2015	Mixed swamp forest	Canopy 10m	10			
247	TREE T 1B 350m 2016	Mixed swamp forest	Canopy 10m	10	х		
257	TREE T SC 685m 2015	Mixed swamp forest	Canopy 10m	10			
81	TS x TBB 525m	Mixed swamp forest	Forest edge (<20m)	16–20	х		
81	TS x TCC	Mixed swamp forest	Forest edge (<20m)	16–20			
131	TP 0 650m	Tall interior forest	Interior forest	16–20	х		х
131	TP 1 1200m	Tall interior forest	Interior forest	16–20			
130	TP A 800m	Tall interior forest	Interior forest	16–20			
130	TP A x TP 1	Tall interior forest	Interior forest	16–20			
131	TP B 1700m	Tall interior forest	Interior forest	16–20			
2399	Km5 x Railway	Low interior forest	Interior forest	16–20	х		

Appendix 2. Summary of camera trap (CT) locations in Rungan, Central Kalimantan Indonesian Borneo. LC - Leopard Cat, MC - Marbled Cat, FHC - Flat-headed Cat.

No. of CT days	Location of camera	Habitat class	Additional habitat information	Altitude (m)	LC	мс	FhC	BC
107	Mungku Baru Cam 13 Frank	Kerangas/ heath	Interior forest	50	х			
107	Mungku Baru Cam 15 Frank	Kerangas/ heath	Interior forest	50				
107	Mungku Baru Cam 16 Frank	Kerangas/ heath	Interior forest	50	х			
106	Mungku Baru Cam 18 Frank	Kerangas/ heath	Interior forest	50				
106	Mungku Baru Cam 19 Frank	Kerangas/ heath	Interior forest	50				
682	Mungku Baru Cam 2 Frank	Kerangas/ heath	Interior forest	50				
316	Mungku Baru Cam 3 Frank	Kerangas/ heath	Interior forest	50	х			
274	Mungku Baru Cam 4 Frank	Kerangas/ heath	Interior forest	50				
682	Mungku Baru Cam 5 Frank	Kerangas/ heath	Interior forest	50	х	х		
682	Mungku Baru Cam 6 Frank	Kerangas/ heath	Interior forest	50				
64	Mungku Baru Cam 7 Frank	Kerangas/ heath	Interior forest	50	х			
63	Mungku Baru Cam 8 Frank	Kerangas/ heath	Interior forest	50				
63	Mungku Baru Cam 9 Frank	Kerangas/ heath	Interior forest	50			х	
661	Mungku Baru CAM BNF 1+2	Kerangas/ heath	Interior forest	50	х			
661	Mungku Baru CAM BNF 11+12	Kerangas/ heath	Interior forest	50	х			
661	Mungku Baru CAM BNF 13+14	Kerangas/ heath	Interior forest	50	х			х
660	Mungku Baru CAM BNF 17+18	Kerangas/ heath	Interior forest	50	х			
660	Mungku Baru CAM BNF 19+20	Kerangas/ heath	Interior forest	50				
659	Mungku Baru CAM BNF 21+22	Kerangas/ heath	Interior forest	50				
659	Mungku Baru CAM BNF 23+24	Kerangas/ heath	Interior forest	50				
660	Mungku Baru CAM BNF 25+26	Kerangas/ heath	Interior forest	50				
497	Mungku Baru CAM BNF 27+28	Kerangas/ heath	Interior forest	50				
660	Mungku Baru CAM BNF 29+30	Kerangas/ heath	Interior forest	50			х	
498	Mungku Baru CAM BNF 3+4	Kerangas/ heath	Interior forest	50				
660	Mungku Baru CAM BNF 31+32	Kerangas/ heath	Interior forest	50				
660	Mungku Baru CAM BNF 33 TREE	Kerangas/ heath	12m in canopy	70				
355	Mungku Baru CAM BNF 34 TREE	Kerangas/ heath	10m in canopy	70				
296	Mungku Baru CAM BNF 5+6	Kerangas/ heath	Interior forest	70		х		
498	Mungku Baru CAM BNF 7+8	Kerangas/ heath	Interior forest	70	х			
62	Mungku Baru Cam 1 Frank	Kerangas/ heath	Interior forest	70				
63	Mungku Baru Cam 10 Frank	Low interior forest	Interior forest	70				
109	Mungku Baru Cam 11 Frank	Low interior forest	Interior forest	70				
109	Mungku Baru Cam 12 Frank	Low interior forest	Interior forest	70				
107	Mungku Baru Cam 17 Frank	Low interior forest	Interior forest	70				
107	Mungku Baru Cam 14 Frank	Mixed swamp forest	Interior forest	70				
660	Mungku Baru CAM BNF 15+16	Mixed swamp forest	Interior forest	70				
661	Mungku Baru CAM BNF 9+10 Danau	Mixed swamp forest	Edge of a lake	40			х	

Appendix 3. Scientific, common, and Indonesian names and IUCN Red List status of species from Central Kalimantan, Indonesian Borneo.

Scientific name	Common name	Local name	Recent IUCN status
Pongo pygmaeus	Bornean Orangutan	Kahiu	Critically Endangered
Manis javanica	Sunda Pangolin	Trenggiling, Peusing	Critically Endangered
Prionailurus planiceps	Flat-headed Cat	Kucing dampak	Endangered
Cynogale bennettii	Otter Civet	Musang air	Endangered
Catopuma badia	Bay Cat	Kucing merah	Endangered
Hylobates albibarbis	Bornean White-bearded Gibbon	Kalaweit/ Owa-owa	Endangered
Ciconia stormi	Storm's Stork	Unknown	Endangered
Neofelis diardii	Sunda Clouded Leopard	Macan dahan/ Harimau dahan	Vulnerable
Lophura erythrophthalma	Malay Crestless Fireback	Manok himba	Vulnerable
Helarctos malayanus	Sun Bear	Beruang	Vulnerable
Arctictis binturong	Binturong	Binturong	Vulnerable
Aonyx cinerea	Asian Small-clawed Otter	Unknown	Vulnerable
Sus barbatus	Bearded Pig	Babi hutan	Vulnerable
Cervus unicolor	Sambar	Rusa	Vulnerable
Presbytis rubicunda	Red langur	Kelasi/ Lutung merah	Vulnerable
Macaca nemestrina	Pig-tailed Macaque	Beruk	Vulnerable
Tarsius bancanus borneanus	Horsfield's Tarsier	Inkir/ Binatang hantu	Vulnerable
Petinomys setosus	Temminck's Flying Squirrel	Unknown	Vulnerable
Mulleripicus Pulverulentus	Great Slaty Woodpecker	Balatuk	Vulnerable
Setornis criniger	Hook-billed Bulbul	Unknown	Vulnerable
Melanoperdix niger	Black Partridge	Unknown	Vulnerable
Pardofelis marmorata	Marbled Cat	Kuwuk	Near Threatened
Hemigalus derbyanus	Banded Civet	Musang	Near Threatened
Herpestes semitorquatus	Collared Mongoose	Unknown	Near Threatened
H. brachyurus	Short-tailed Mongoose	Unknown	Near Threatened
Muntiacus atherodes	Bornean Yellow Muntjac	Kijang/ Kidang, Muncak	Near Threatened
Anthracoceros malayanus	Black Hornbill	Tingang/Enggang	Near Threatened
Carpococcyx radiatus	Bornean Ground-cuckoo	Unknown	Near Threatened
Strix leptogrammica	Brown Wood-owl	Unknown	Near Threatened
Lophura ignita	Bornean Crested Fireback	Unknown	Near Threatened
Harpactes diardii	Diard's Trogon	Unknown	Near Threatened
Trichixos pyrropygus	Rufous-tailed Shama	Unknown	Near Threatened
Trichastoma rostratum	White-chested Babbler	Unknown	Near Threatened
Prionailurus javanensis	Leopard Cat	Kucing hutan, Meong congkok	Least Concern
Trichys fasciculata	Long-tailed Porcupine	Landak	Least Concern
Hystrix brachyura	Malayan Porcupine	Landak	Least Concern
Prionodon linsang	Banded Linsang	Musang congkok	Least Concern
Paradoxurus hermaphroditus	Common Palm Civet	Unknown	Least Concern
Viverra tangalunga	Malay Civet	Unknown	Least Concern
Arctogalidia trivirgata	Small-toothed Palm Civet	Civet	Least Concern
Martes flavigula	Yellow-throated Marten	Unknown	Least Concern
Mustela nudipes	Malay Weasel	Unknown	Least Concern
Muntiacus muntjak	Southern Red Muntjac	Unknown	Least Concern
Macaca fascicularis	Long-tailed Macaque	Monyet ekor panjang (Kra)	Least Concern

Scientific name	Common name	Local name	Recent IUCN status
Nannosciurus melanotis	Black-eared Squirrel	Hantitik	Least Concern
Sundasciurus Iowii	Low's Squirrel	Unknown	Least Concern
Echinosorex gymnura	Moonrat	Unknown	Least Concern
Ptilocercus Lowii	Pen-tailed Treeshrew	Unknown	Least Concern
Callosciurus notatus	Plantain Squirrel	Unknown	Least Concern
C. prevostii	Prevost's Squirrel	Unknown	Least Concern
Maxomys surifer	Indomalayan Maxomys	Unknown	Least Concern
Tupaia glis	Common Treeshrew	Tupai	Least Concern
T. splendidula	Ruddy Treeshrew	Tupai	Least Concern
T. picta	Painted Treeshrew	Tupai	Least Concern
T. tana	Large Treeshrew	Тираі	Least Concern
T. gracilis	Slender Treeshrew	Tupai	Least Concern
T. minor	Lesser Treeshrew	Tupai	Least Concern
Exilisciurus whiteheadi	Tufted Pygmy Squirrel	Hantitik	Least Concern
Pellorneum capistratum	Black-capped Babbler	Unknown	Least Concern
Pitta moluccensis	Blue-winged Pitta	Unknown	Least Concern
Ketupa ketupu	Buffy Fish-owl	Unknown	Least Concern
Stachyris erythroptera	Chestnut-winged Babbler	Unknown	Least Concern
Phaenicophaeus curvirostris	Chestnut-breasted Malkoha	Unknown	Least Concern
Centropus bengalensis	Lesser Coucal	Unknown	Least Concern
Accipiter trivirgatus	Crested Goshawk	Unknown	Least Concern
Spilornis cheela	Crested Serpent-eagle	Unknown	Least Concern
Rhipidura javanica	Pied Fantail	Unknown	Least Concern
Caprimulgus affinis	Savanna Nightjar	Unknown	Least Concern
Pelargopsis capensis	Stork-billed Kingfisher	Bakaka	Least Concern
Sitta frontalis	Velvet-fronted Nuthatch	Unknown	Least Concern
Amaurornis phoenicurus	White-breasted Waterhen	Baburak	Least Concern
Copsychus malabaricus	White-rumped Shama	Murai	Least Concern
Spizaetus melanoleucus	Black-and-white Hawk-eagle	Antang	Least Concern
Varanus salvator	Common Water Monitor	Biawak	Least Concern

Author details: Karen Jeffers is the Sebangau Research Project Manager of the Borneo Nature Foundation. She has over 10 years' experience in Indonesia studying biodiversity, policy and has been researching small felids in Sebangau for some years, providing unique insights into their behaviour. Mr. Adul is the Senior Camera Trap Coordinator for BNF. Adul has worked with the camera trap project since its inception and has travelled to several other conservation projects to share his knowledge and skills in running camera trap projects. Adul presented BNF's work at the Indonesian Carnivore Conference in 2017. Susan Cheyne has worked in Southeast Asia since 1997 and in Indonesia since 2002. She is a co-director of BNF and has carried out long-term gibbon and mammal population monitoring in eight sites across Indonesian Borneo. She is a vice-chair of the IUCN Primate Specialist Group Section on Small Apes and a member of the IUCN Cat Specialist Group.

Author contribution: Karen Jeffers carried out the field research under RISTEK permit number 8/TKPIPA/E5/Dit.KI/VIII/2018. She contributed to data collection with Adul and analysis and writing with SMC. Adul designed the camera study grid with KAJ and SMC and assisted the fieldwork. He contributed to data analysis with KAJ and SMC. Susan Cheyne conceived of the study and assisted in the field design. Along with KAJ and Adul she analysied the data and wrote the paper.

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

March 2019 | Vol. 11 | No. 4 | Pages: 13419–13510 Date of Publication: 12 March 2019 (Online & Print) DOI: 10.11609/jott.2019.11.4.13419-13510

SMALL WILD CATS SPECIAL ISSUE

Small cat surveys: 10 years of data from Central Kalimantan,

Indonesian Borneo

- Karen Anne Jeffers, Adul & Susan Mary Cheyne, Pp. 13478-13491

Short Communications

Insights into the feeding ecology of and threats to Sand Cat *Felis margarita* Loche, 1858 (Mammalia: Carnivora: Felidae) in the Kyzylkum Desert, Uzbekistan

- Alex Leigh Brighten & Robert John Burnside, Pp. 13492-13496

First photographic evidence of Fishing Cat *Prionailurus viverrinus* Bennett, 1833 and Clouded Leopard *Neofelis nebulosa* Griffith, 1821 (Carnivora: Felidae) in Parsa National Park, Nepal

Shashank Poudel, Babu Ram Lamichhane, Santosh Bhattarai,
 Dipendra Adhikari, Chiranjibi Prasad Pokheral, Tek Raj Bhatt,
 Sailendra Raj Giri, Saneer Lamichhane, Amir Sadaula, Ashish Gurung,
 Laxman Prasad Poudyal, Uba Raj Regmi & Naresh Subedi, Pp. 13497–
 13501

First photographic evidence of polymorphic Asiatic Golden Cat Catopuma temminckii Vigors & Horsfield, 1827 (Mammalia: Carnivora: Felidae) in Buxa Tiger Reserve, West Bengal, India – Mayukh Ghose, Deepak Sharma & Nandavaram Subbarao Murali, Pp. 13502–13505

First photographic record of the Rusty-spotted Cat *Prionailurus rubiginosus* (I. Geoffroy Saint-Hilaire, 1831) (Mammalia: Carnivora: Felidae) in Horton Plains National Park, Sri Lanka

Thilina Sudarshana Nimalrathna, Yan Ru Choo, Enoka P.
 Kudavidanage, Thakshila Ravindra Amarasinghe, Udamulle Gedara
 Sumith Indika Bandara, Wanninayaka Aarahchilage Charitha Lakmali
 Wanninayaka, Piyal Ravindrakumar, Marcus Aik Hwee Chua &
 Edward L. Webb, Pp. 13506–13510

www.threatenedtaxa.org

Editorial

Foreword to the small wild cats special issue – Angie Appel & Shomita Mukherjee, 13419–13420

Articles

Using camera traps to study the elusive European Wildcat Felis silvestris silvestris Schreber, 1777 (Carnivora: Felidae) in central Germany: what makes a good camera trapping site? – Harald Wening, Lynne Werner, Matthias Waltert & Markus Port, Pp. 13421–13431

Activity patterns of the small and medium felid (Mammalia: Carnivora: Felidae) guild in northeastern India

 Shomita Mukherjee, Priya Singh, André Pinto Silva, Chandan Ri, Kashmira Kakati, Binod Borah, Tana Tapi, Sandesh Kadur,
 Prafull Choudhary, Shikha Srikant, Surabhi Nadig, R. Navya,
 Mats Björklund & Uma Ramakrishnan, Pp. 13432–13447

Estimating Leopard Cat *Prionailurus bengalensis* Kerr, 1792 (Carnivora: Felidae) density in a degraded tropical forest fragment in northeastern Thailand

 Wyatt Joseph Petersen, Tommaso Savini, Robert Steinmetz & Dusit Ngoprasert, Pp. 13448–13458

An update on the status of Fishing Cat *Prionailurus viverrinus* Bennett, 1833 (Carnivora: Felidae) in Thailand

Wanlop Chutipong, Anucha Kamjing, Worata Klinsawat, Dusit
 Ngoprasert, Kitipat Phosri, Niti Sukumal, Pongnapa Wongtung &
 Naruemon Tantipisanuh, Pp. 13459–13469

Communications

The Caracal Caracal caracal Schreber, 1776 (Mammalia: Carnivora: Felidae) in Uzbekistan – Mariya Alexeevna Gritsina, Pp. 13470–13477

Publisher & Host

Member

