 jornal of Threatened Taxa

Building evidence for conservation globally

www.threatenedtaxa.org

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

SHORT COMMUNICATION
FIRST RECORD OF THE ENDANGERED ARABIAN TAHr
ARABITRAGUS JAYAKARI (THOMAS, 1894) IN THE HATTA MOUNTAIN
CONSERVATION AREA, DUBAI, UNITED ARAB EMIRATES

26 October 2018 | Vol. 10 | No. 11 | Pages: 12561-12565
10.11609/jott.4157.10.11.12561-12565

For Focus, Scope, Aims, Policies and Guidelines visit http://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0
For Article Submission Guidelines visit http://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions
For Policies against Scientific Misconduct visit http://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2
For reprints contact <info@threatenedtaxa.org>
FIRST RECORD OF THE ENDANGERED ARABIAN TAHR

Arabitragus jayakari (Thomas, 1894) IN THE HATTA MOUNTAIN CONSERVATION AREA, DUBAI, UNITED ARAB EMIRATES

Jeruel Cabadonga Aguhob1, Junid N. Shah 2, Esmat Elfaki Mohammed Elhassan 3, Aisha Almurr Al Muhery 4, Mohamed Mustafa Eltayeb Mohamed 5, Juma Abdulla Saeed Mohammad Al Omairi 6, Hamad Hashim Mohammed Khalaf Albedwawi 7, Obaid Mohammed Salem Mohammed Al Bedwawi 8, Hassan Zain Alsharif 9 & Afra Mahmood Mohammad Ali Haji 10

1–10 Natural Resource Conservation Section, Environmental Department, PO Box 67, Dubai, United Arab Emirates

Abstract: The Arabian Tahr *Arabitragus jayakari* is endemic to the Hajar Mountains of Oman and the United Arab Emirates in the southeast of the Arabian Peninsula and is categorized as Endangered on the IUCN Red List of Threatened Species. Lack of scientific research from areas of its occurrence has been a challenge in determining its basic ecological aspects such as current distribution range, population status, and abundance. In the present study, we report a new distribution record for the Arabian Tahr from the Hatta Mountain Conservation Area in the Dubai Emirate through camera trap images. A total of 442 images (44 events) were obtained using three camera traps on 564 trap nights between March and December 2016. About 90% of the Arabian Tahr captures were recorded between 1100 and 1600 hr, indicating diurnal activity. This new occurrence record of the Arabian Tahr from this area is considered of high significance as it will drive in more studies and incentives towards the conservation and management of the species and the area as a whole.

Keywords: Arabian Tahr, *Arabitragus jayakari*, Hatta Mountain Conservation Area, camera trapping, Dubai Emirate, first record, UAE.

Information on species distribution and diversity pattern is crucial for understanding the ecological and evolutionary determinants of spatial heterogeneity in biodiversity (Ricklefs & Schluter 1993). Spatial congruence of species distributions has been studied in several taxa (Marquez et al. 1997; Gómez-González et al. 2004; Oertli et al. 2005), but remains poorly understood in certain mammalian communities, especially in herbivores, in the Middle East region. The ungulates of the Arabian Peninsula region, Arabian Oryx *Oryx leucoryx*, Arabian Ibex *Capra nubiana*, and gazelles *Gazella marica* & *G. arabica*, are generally poorly known among local communities and the general public. There is, however, a widespread impression that they are under severe threat because of overgrazing, lack of protection, and lack of knowledge, and that the animals are fragmented into small populations (Conservation Breeding Specialist...
Record of Arabian Tahr in Hatta Mountain Conservation Area, UAE

A guhob et al.

Arabian Tahr is one of the two species formerly included in the genus *Hemitragus* that are disjunctly distributed in the southern slopes of the Himalaya (*H. jemlahicus*), and southeastern Arabia (*H. jayakari*). Hassanin & Douzery (1999) suggested that Tahr was probably of Eurasian origin and most closely related to Ibex, goat, and Bharal (*Pseudois*). More recent research on their molecular genetics (Ropiquet & Hassanin 2005), however, surprisingly concludes that *Hemitragus* is polyphyletic and that the Arabian Tahr is genetically most similar to the northern African Aoudad *Ammotragus lervia* and more distantly related to the other Tahr species.

The Arabian Tahr species has been categorized as critically endangered in the UAE (Hornby 1996). It has been reported from mountainous areas such as Jabal Hafeet in Abu Dhabi Emirate and from Wadi Wurayah in Fujairah Emirate, which included local reports from its immediate vicinities (Tourenq et al. 2009; Al Zaabi & Soorae 2015). On the other hand, a survey of Ru’us Al Jabal in Ras Al Khaimah Emirate reported that Tahr was absent in the area, which was confirmed as local communities also did not have any knowledge of the species (EPAA 2006).

Previous studies have established the presence of the Arabian Tahr in the UAE, in Wadi Wurayah in the Emirate of Fujairah and in Jabal Hafeet in the Emirate of Abu Dhabi. There were no previous reports of the Arabian Tahr from Hatta Mountain Conservation Area (hereafter Hatta MCA) since no study was conducted in the area.

It is difficult to study this species through direct observation or other traditional study methods as with other elusive mammals (Silveira et al. 2003; Rovero & De Luca 2007; Tobler et al. 2008a,b; Ahmed et al. 2016) to study their activity patterns and habitat use (Bowkett et al. 2008).

With this background and main objective, we aimed to document the presence of the Arabian Tahr in the Hatta MCA of Dubai Emirate by using non-invasive camera trapping.

METHODS

The Hatta Mountain Conservation Area (Hatta MCA) in Dubai, UAE (24.760°N & 56.111°E), encompasses an area of around 27.43km² mainly consisting of mountainous rugged terrain with freshwater ecosystems (Fig. 1). Camera trapping was carried out between March and December 2016 in order to record the baseline status of biodiversity in the Hatta MCA (Fig. 1). Three camera traps (Bushnell™) were deployed on the trails at three different locations selected, based on the presence of indirect evidence (pellet groups of herbivore species) at Hatta MCA. Images taken using remotely triggered camera traps were used to ascertain the presence of different species in the area. Camera traps were mounted on rocks as it was difficult to mount them with tripods due to the ruggedness of the terrain and unpredictability of weather conditions in the area. The camera trap locations were recorded by a handheld (eTrex™) GPS receiver unit and ancillary information such as date, time, and temperature was recorded. Data analyses were done in MS Excel 2013 and Oriana (V 4.01). Image capture rates (R) were calculated as number of independent photographic events (N) divided by the number of camera nights deployed (T) as follows:

\[R = \frac{N}{T} \times 100 \]

RESULTS AND DISCUSSION

A total of 442 images of the Arabian Tahr (44 events) were obtained from 564 trap nights during the study period with a rate of 7.8 capture events per 100 trapping
The first retrieved image of the Arabian Tahr was taken on 07 May 2016 at 1409 hr, marking it as the first photographic record of the Arabian Tahr from the Hatta MCA (Image 1). The last image capture was recorded on 03 December 2016. Individuals were captured six times on 07 May 2016 on camera trap no. 2. Furthermore, camera trap no. 2 captured individuals at 14 different times, while camera trap no. 3 captured individuals at two different times. Camera trap no. 1 was unfortunately stolen, hence the absence of data.

In terms of the timing of images, about 90% of the captures were recorded between 1100 and 1600 hr, indicating a diurnal activity pattern. The remaining (10%) images were captured from 1600 to 1100 hr. We assume this activity pattern may be a result of the least human disturbance during the hottest hours of the day. The frequency of the Arabian Tahr recorded in camera
traps along 24-hour cycles is given in the circular plot (Fig. 2).

During the course of the study, the temperature stamped on the images ranged between 21 and 45°C with an average of 39.38±0.22°C (mean ± SE) between May and December 2016, which indicates that Arabian Tahr prefers medium to high temperature for its activities. The images show that the majority of individuals (34.52%) were photographed while walking, followed by resting, standing, and rubbing (Fig. 3).

Comparing the general body conditions such as build, size, and horns, we were able to record nine to 12 individuals through the camera trap images (Image 2). This population of the Arabian Tahr seems to be the largest in the UAE as compared to the two other populations recorded in the country. At Jabal Hafeet, a maximum of six individuals was recorded (Al Zaabi & Soorae 2015), while in Wadi Wurayah its presence has been documented without any estimate of the population (Tourenq et al. 2009) and there have been no records since 2012 (Al Bustan Zoological Centre and Environmental Agency – Abu Dhabi 2017). These two locations where the Arabian Tahr are recorded in UAE are not connected to the population found in Hatta MCA as these areas are not linked by any corridors.

The confirmed presence of this secretive animal in the Hatta MCA is highly significant as it will a) add to the knowledge base of the extent of the Tahr’s range not just in the UAE but also in the whole Hajjar Mountain range, b) help in formulating an effective management plan for the conservation of this rare and charismatic species in the area as establishing spatial distribution of species is critical for designing appropriate conservation strategies, and c) strengthen the significance on the establishment of a protected area in species conservation.

With the confirmation of the Tahr population in the Hatta MCA, further studies can provide a better understanding of the different ecological characteristics and threats faced by the species in the area. The data generated will be valuable in all levels of the decision-making process and in ensuring the continued survival of this species in not only the national context but also in a transboundary, multinational management framework.

REFERENCES

The terrestrial life of sea kraits: insights from a long-term study on two Laticauda species (Reptilia: Elapidae) in the Andaman Islands, India
-- Zoya Tyabji, Nitya Prakash Mohanty, Erina Young & Tasneem Khan, Pp. 1243–12450

Communications

Fishing Cat Prionailurus viverrinus Bennett, 1833 (Carnivora: Felidae) distribution and habitat characteristics in Chitwan National Park, Nepal
-- Rama Mishra, Khadga Basnet, Rajan Amin & Babu Ram Lamichhane, Pp. 12451–12458

Status distribution and feeding habit of Wild Boar Sus scrofa (Mammalia: Artiodactyla: Suidae) in Pench Tiger Reserve, Madhya Pradesh, India
-- Shaheen Khan & Orus Ilyas, Pp. 12459–12463

The composition and status of waterbirds of Perur Lake in Tamil Nadu, India
-- G. Parameswaran & R. Sivashankar, Pp. 12464–12488

The herpetofauna of Jigme Singye Wangchuck National Park in central Bhutan: status, distribution and new records
-- Sangay Tshewang & Letro Letro, Pp. 12489–12498

The Odonata (Insecta) of Dhofar, southern Oman
-- Elaine M. Cowan & Peter J. Cowan, Pp. 12499–12514

New kissing bug (Hemiptera: Reduviidae: Triatominae) records from Napo and Morona-Santiago provinces with distribution updates in Ecuador

Orchid diversity in two community forests of Makawanpur District, central Nepal
-- Bijaya Pant, Mukti Ram Paudel, Mukesh Babu Chand, Shreeti Pradhan, Bijaya Bahadur Mall & Bhakta Bahadur Raskoti, Pp. 12523–12530

Habitat distribution modeling for reintroduction and conservation of Aristolochia indica L. - a threatened medicinal plant in Assam, India
-- Bhaskar Sarma, Prantik Sharma Baruah & Bhaben Tanti, Pp. 12531–12537

Pollination ecology of Synedrella nodiflora (L.) Gaertn. (Asteraceae)

Notes

Two moth species of Lasiocampidae (Lepidoptera: Lasiocampoidea) recorded for the first time in Bhutan
Jatishwor Singh Irungbam & Meenakshi Jatishwor Irungbam, Pp. 12598–12601

New nymphalid butterfly records from Jammu & Kashmir, India
-- Shakha Sharma & Neeraj Sharma, Pp. 12602–12606

Argostemma khasianum C.B. Clarke (Rubiaceae): a new record of a genus and species of flowering plant for the state of Arunachal Pradesh (India) and its lectotypification
-- Umeshkumar L. Tiwari & V.K. Rawat, Pp. 12607–12609

Amorphophallus longiconnectivus and A. margaritifer: additional aroids from Maharashtra with notes on the floral variations

Cultivation of the Himalayan seasoning Allium in a remote village of Uttarakhand, India
-- Chandra Prakash Kuniyal & Bir Singh Negi, Pp. 12614–12617

Miscellaneous

National Biodiversity Authority Authority