NEW RECORDS OF EARTHWORM FAUNA (OLIGOCHAETA: GLOSSOSCOLECIDAE AND MEGASCOLECIDAE) COLLECTED FROM SATKOSIA-BAISIPALLI WILDLIFE SANCTUARY OF ODISHA, INDIA

Rinku Goswami

26 August 2018 | Vol. 10 | No. 9 | Pages: 12230–12234
10.11609/jott.3616.10.9.12230-12234
New records of earthworm fauna (Oligochaeta: Glossoscolecidae and Megascolecidae) collected from Satkosia-Baisipalli Wildlife Sanctuary of Odisha, India

Rinku Goswami

Zoological Survey of India, M-Block, New Alipore, Kolkata, West Bengal 700053, India
rinku_zsi@yahoo.co.in

ISSN 0974-7907 (Online)
ISSN 0974-7893 (Print)

OPEN ACCESS

Extensive areas in Indian forest reserves are still unexplored and have never been sampled for earthworms. To estimate earthworm biodiversity correctly, the majority of species in the country are yet to be found and described. Consequently, new locations should be sampled, which represents a great challenge, since there are few researchers working in this area. With this view Satkosia-Baisapalli Wildlife Sanctuaries in Odisha, India were selected for earthworm faunal survey (Image 1). These twin reserves are the meeting point of two bio-geographic regions of India, the Deccan peninsula and the Eastern Ghats, contributing immense earthworm diversity in that area. The landscape is hilly and the general elevation is around 350m from sea level. The climate of the region is tropical resulting in high summer temperatures. The Satkoshia gorge of the river Mahanadi and the reserve has tremendous genetic and ecological importance.

The first record of earthworms from Odisha was published by Michaelsen (1910). The work was followed by Stephenson and he described several species (1914, 1915, 1916, 1917, 1921, 1923, 1926). Subsequently, many other scientists presented data about earthworms from Odisha, viz., Julka (1976, 1978), Patra & Dash (1973), Das & Patra (1977), Senapati & Dash (1979, 1981, 1982, 1983), Dash & Senapati (1980), Senapati et al. (1979), Senapati (1980). Thirty species are described by Julka et al. (1987). Blakemore (2006) made a checklist of earthworms of Odisha and Goswami et al. (2013) worked on taxonomic records of earthworms from Odisha. The aim of the present paper is to report on these collections, including four new records from Odisha (Fig. 1).

Abstract: A survey work was conducted in Satkoshia-Baisapalli Wildlife Sanctuary in Odisha, India, where altogether 10 earthworm species were collected. Out of these, four species—Pontoscolex corethrurus (Müller, 1856), Metaphire houlleti (Perrier, 1872), Perionyx bainii Stephenson, 1915, Perionyx baiotensis Julka & Paliwal 1993—are reported for the first time after the original description and is proved to be a new record for the state of Odisha.

Keywords: Earthworms, Metaphire houlleti, new record, Odisha, Perionyx bainii, Perionyx baiotensis, Pontoscolex corethrurus, taxonomic.

Copyright: © Goswami 2018. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use of this article in any medium, reproduction and distribution by providing adequate credit to the authors and the source of publication.

Funding: Ministry of Environment, Forests & Climate Change.

Competing interests: The author declares no competing interests.

Acknowledgements: I am highly grateful to the Director of Zoological Survey of India, Kolkata, Dr. Kailash Chandra, for the facilities provided and for his constant encouragements and valuable suggestions. Also I acknowledge Satkosia forest range website www.satkosia.org for information provided on Satkosia Tiger Reserve.
Materials and Methods

Live earthworm were narcotised in 70% alcohol and then washed and preserved in 10% formalin with proper labeling. The specimens were studied under the Leica EZ4 microscopic binocular. All the studied specimens are deposited at the National Zoological Collection of Zoological Survey of India, Kolkata. The registration numbers are mentioned in material examined. GPS with elevation, temperature and pH were recorded during the collection. Photographs were taken by Leica EZ4HD to specify the identified characters.

Taxonomic description

I. Family: Glossoscolecidae

1. Genus Pontoscolex Schmarda, 1861
 (1) Pontoscolex corethrurus (Muller, 1856)

II. Family: Megascolecidae

2. Genus Metaphire Sims & Easton, 1972
 (2) Metaphire houlleti (Perrier, 1872)

3. Genus Perionyx Perrier, 1872
 (3) Perionyx bainii Stephenson, 1915
 (4) Perionyx barotensis Julka & Paliwal, 1993

Systematic Accounts

I. Family Glossoscolecidae

1. Genus Pontoscolex Schmarda 1861
 (1) Pontoscolex corethrurus (Muller) (Image 2)

Diagnosis: Length 45–100 mm.; diameter 2-4 mm. Segments 60-230. Dorsal side is reddish brown and ventral side is colourless. Dorsal pore absent. Prostomium elongated like a long thin proboscis while it moves. Clitellum saddle shaped, covering 14–22. Setae lumbricine, i.e., 8 per segment in regular rows, but in the tail region setae rows enlarged and becomes alternative in adjacent segments i.e., quincunx arrangement. Male pores (20/21) and 3 pairs spermathecal pores (6/7-8/9) are minute. Female pore is a transverse slit at left side of mid ventral line at AB, in front of intersegmental furrow 14/15.

Distribution: India (Odisha, Andaman Islands, Andhra Pradesh, Gujarat, Karnataka, Kerala, Maharashtra, Tamil
New records of earthworm from Odisha

Goswami

Nadu, West Bengal), Africa, Australia, Belize, Indonesia, Iran, Madagascar, Mexico, Myanmar, Pakistan, Sri Lanka, South America, Thailand, USA.

Type locality: Itajahy, Brazil.

Remarks: This species make the soil hard and compact.

II. Family Megascolecidae

2. Genus Metaphire Sims & Easton, 1972

(2) Metaphire houlleti (Perrier, 1872) (Image 3)

Distribution: India (Odisha, Andaman & Nicobar Islands, Himachal Pradesh, Jammu & Kashmir, Karnataka, Kerala, West Bengal), Australia, Bahamas, Bangladesh, Caroline Islands, China, Cuba, Fiji, France, French Guiana, Indonesia, Madagascar, Malay Peninsula, Myanmar, Nepal, Pakistan, Philippines, Salvador, Sierra Leone, Singapore, Sri Lanka, Thailand, USA (Florida), Vietnam.

Type locality: Kolkata, West Bengal, India.

Remarks: The origin of this species is in Southeast Asia.

3. Genus Perionyx Perrier 1872

(3) Perionyx bainii Stephenson, 1915 (Image 4)

Diagnosis: Length 50–65 mm, diameter 3–3.5 mm, segments 84–100. Colour bluish purple, pale ventrally. Prostomium epilobic, tongue open. Clitellum annular, xiii-xvii. Paired male and prostatic pores are combined in the xviii segment. 7–10 penial setae present to each pore in the median. Spermathecal pores in 7/8/9 in large transverse slits.

Distribution: India (Odisha, Himachal Pradesh, Uttar Pradesh).

(4) Perionyx barotensis Julka & Paliwal 1993 (Image 5)

Figure 1. Study area
Source: Google
Male pores and minute prostatic pores are combined. Paired, minute spermathecal pores on 7/8/9.

Distribution: India: Odisha, Himachal Pradesh, Uttar Pradesh.

REFERENCES

Table 1. The location, different edaphic factors, and new record species of earthworms in different collecting spots.

<table>
<thead>
<tr>
<th>Camp name & WS Range</th>
<th>Date</th>
<th>Collection Area</th>
<th>GPS</th>
<th>No. of Earthworms</th>
<th>pH</th>
<th>Temp at ºC</th>
<th>Elevation (Feet)</th>
<th>Name of the species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satkosha (Pampasar Range)</td>
<td>26.1.16</td>
<td>Tarava -2</td>
<td>20.70081°N & 84.38343°E</td>
<td>17</td>
<td>7.17</td>
<td>22.3</td>
<td>13</td>
<td>Pontoscolex corethrurus (Muller, 1856)</td>
</tr>
<tr>
<td>Satkosha (Tikarpada Range)</td>
<td>26.1.16</td>
<td>Hattbari mundasai -1</td>
<td>20.6197°N & 84.30745°E</td>
<td>7</td>
<td>7.16</td>
<td>21.2</td>
<td>45</td>
<td>Metaphire houlleti (Perrier, 1872)</td>
</tr>
<tr>
<td></td>
<td>26.1.16</td>
<td>Hattbari mundasai -2</td>
<td>20.61966°N & 84.30733°E</td>
<td>1</td>
<td>7.15</td>
<td>21.5</td>
<td>45</td>
<td>Metaphire houlleti (Perrier, 1872)</td>
</tr>
<tr>
<td>Satkosha (Pampasar Range)</td>
<td>26.1.16</td>
<td>Tarava -1</td>
<td>20.70068°N & 84.3836°E</td>
<td>1</td>
<td>7.19</td>
<td>22.4</td>
<td>13</td>
<td>Metaphire houlleti (Perrier, 1872)</td>
</tr>
<tr>
<td>Satkosha, Purunakote Range (Chhotkei)</td>
<td>27.1.16</td>
<td>Chhotkei vill.-1</td>
<td>20.63511°N & 84.38006°E</td>
<td>19</td>
<td>7.37</td>
<td>23.5</td>
<td>25</td>
<td>Metaphire houlleti (Perrier, 1872)</td>
</tr>
<tr>
<td>Basipalli-Kuaria (Bangocho west Range)</td>
<td>20.1.16</td>
<td>Kuaria Dam -2</td>
<td>20.34698°N & 84.30726°E</td>
<td>3</td>
<td>7.5</td>
<td>23.3</td>
<td>11</td>
<td>Perionyx bainii Stephenson, 1915</td>
</tr>
<tr>
<td>Basipalli-Kuaria (Bangocho west Range)</td>
<td>20.1.16</td>
<td>Kuaria Dam -2</td>
<td>20.34698°N & 84.30726°E</td>
<td>1</td>
<td>7.5</td>
<td>23.3</td>
<td>11</td>
<td>Perionyx barotensis Julka & Paliwal, 1993</td>
</tr>
<tr>
<td>Satkosha (Tikarpada Range)</td>
<td>26.1.16</td>
<td>Hattbari mundasai -1</td>
<td>20.61966°N & 84.30733°E</td>
<td>9</td>
<td>7.15</td>
<td>21.5</td>
<td>45</td>
<td>Perionyx barotensis Julka & Paliwal, 1993</td>
</tr>
</tbody>
</table>

Key to the identification of earthworms of the new records

1. Setae 8 on each segment in 4 pairs throughout the body ... 2
 1’. Setae numerous or, more than 8 on each segment throughout the body ... 3
2. Setae on posterior segments arranged in irregular rows, alternating between dorsal and ventral positions ... Pontoscolex corethrurus
 3. Nephridia astomate, gizzard between 7/8 and 9/10, male pores within copulatory pouches 4
 3’. Nephridia astomate, gizzard between 7/8 and 9/10, male pores within copulatory pouches 5
4. Invaginated spermatical pores recognizable internally by the presence of stalked glands. Genital markings, when present, small and in the vicinity of spermatical pores .. Metaphire houlleti
5. Male pores are longitudinal slits, each overhung by a small tubercle. A group of penial setae present to each male pore Perionyx barotensis
5’. Male pores and minute prostatic pores are combined. Male genital field without penial setae Perionyx barotensis

Stephenson, J. (1921). Oligochaeta from Manipur, the Laccadive Islands, Mysore and other parts of India. Records of Indian Museum 22: 745–768.

The Journal of Threatened Taxa is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use of articles in any medium, reproduction, and distribution by providing adequate credit to the authors and the source of publication.

ISSN 0974-7907 (Online); ISSN 0974-7893 (Print)

August 2018 | Vol. 10 | No. 9 | Pages: 12147–12298
Date of Publication: 26 August 2018 (Online & Print)
DOI: 10.11609/jott.2018.10.9.12147-12298
www.threatenedtaxa.org

The Journal of Threatened Taxa is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use of articles in any medium, reproduction, and distribution by providing adequate credit to the authors and the source of publication.

ISSN 0974-7907 (Online); ISSN 0974-7893 (Print)

August 2018 | Vol. 10 | No. 9 | Pages: 12147–12298
Date of Publication: 26 August 2018 (Online & Print)
DOI: 10.11609/jott.2018.10.9.12147-12298
www.threatenedtaxa.org

The Journal of Threatened Taxa is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use of articles in any medium, reproduction, and distribution by providing adequate credit to the authors and the source of publication.

ISSN 0974-7907 (Online); ISSN 0974-7893 (Print)

August 2018 | Vol. 10 | No. 9 | Pages: 12147–12298
Date of Publication: 26 August 2018 (Online & Print)
DOI: 10.11609/jott.2018.10.9.12147-12298
www.threatenedtaxa.org

The Journal of Threatened Taxa is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use of articles in any medium, reproduction, and distribution by providing adequate credit to the authors and the source of publication.

ISSN 0974-7907 (Online); ISSN 0974-7893 (Print)

August 2018 | Vol. 10 | No. 9 | Pages: 12147–12298
Date of Publication: 26 August 2018 (Online & Print)
DOI: 10.11609/jott.2018.10.9.12147-12298
www.threatenedtaxa.org

The Journal of Threatened Taxa is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use of articles in any medium, reproduction, and distribution by providing adequate credit to the authors and the source of publication.

ISSN 0974-7907 (Online); ISSN 0974-7893 (Print)

August 2018 | Vol. 10 | No. 9 | Pages: 12147–12298
Date of Publication: 26 August 2018 (Online & Print)
DOI: 10.11609/jott.2018.10.9.12147-12298
www.threatenedtaxa.org

The Journal of Threatened Taxa is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use of articles in any medium, reproduction, and distribution by providing adequate credit to the authors and the source of publication.

ISSN 0974-7907 (Online); ISSN 0974-7893 (Print)

August 2018 | Vol. 10 | No. 9 | Pages: 12147–12298
Date of Publication: 26 August 2018 (Online & Print)
DOI: 10.11609/jott.2018.10.9.12147-12298
www.threatenedtaxa.org

The Journal of Threatened Taxa is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use of articles in any medium, reproduction, and distribution by providing adequate credit to the authors and the source of publication.