SHORT COMMUNICATION

A THREAT ASSESSMENT OF THREE-STRIPED PALM SQUIRREL

Funambulus palmarum (Mammalia: Rodentia: Sciuridae)
FROM ROADKILLS IN SIGUR PLATEAU, MUDUMALAI TIGER RESERVE, TAMIL NADU, INDIA

Arockianathan Samson, Balasundaram Ramakrishnan & Jabamalainathan Leonaprincy

26 July 2020 | Vol. 12 | No. 10 | Pages: 16347–16351
DOI: 10.11609/jott.3378.12.10.16347-16351

For Focus, Scope, Aims, Policies, and Guidelines visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0
For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions
For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2
For reprints, contact <ravi@threatenedtaxa.org>

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.
A threat assessment of Three-striped Palm Squirrel *Funambulus palmarum* (Mammalia: Rodentia: Sciuridae) from roadkills in Sigur Plateau, Mudumalai Tiger Reserve, Tamil Nadu, India

Arockianathan Samson 1, Balasundaram Ramakrishnan 2 & Jabamalainathan Leonaprincy 3

1 Vulture Programme, Bombay Natural History Society, Mumbai, Maharashtra 400001, India.
2 Mammalogy and Forest Ecology, 3 Herpetology and Tribal Medicine Lab, Department of Zoology and Wildlife Biology, Government Arts College, Udhgamandalam, Nilgiris, Tamil Nadu 643002, India.
1 kingvulture1786@gmail.com (corresponding author), 2 bio.bramki@gmail.com, 3 leonaprincymsc@gmail.com

Abstract: This study was undertaken to assess the threat from road kills for three-striped palm squirrels in the tropical forest of Sigur plateau, Mudumalai Tiger Reserve, Tamil Nadu, and Southern India from January 2014 to December 2016. Road kills were recorded along the Udhagamandalam to Masinagudi state highway passing through Mudumalai Tiger Reserve (40 km). Four visits per month were carried out mostly on weekends (Saturday or Sunday). A total of 497 three-striped palm squirrel kills were recorded, with an overall rate of 0.09/ km of the roadway. Habitat wise 387 kills were observed in the thorn forest and 110 in dry deciduous forest habitats. Season wise 176 kills were recorded in winter, 156 in summer, 83 post-monsoon, and 82 during the monsoon. The study distinguished the ongoing major threat on the three-striped palm squirrel in the present scenario.

Keywords: Deciduous forest, ecology, habitat loss, mortality, vehicle movements.

The Three-striped Palm Squirrel *Funambulus palmarum* is a small rodent of the Sciuridae family, with four subspecies native to India and Sri Lanka. *F. palmarum* is endemic to southern India and Sri Lanka (Thorington & Hoffmann 2005; Nameer & Molur 2008), where it is widely distributed from sea level to 2,000m (Nameer & Molur 2014). Squirrels can reach head-body length of 12–15 cm and tail length of 14–15 cm (Menon 2014), and they have short fur that is yellowish-brown or brown on the back and creamy white on the belly (Menon 2014). Three white stripes on the back stretch from the head to tail. *F. palmarum* has dark round eyes, small triangular ears, long front teeth, and a bushy tail (Figure 1a; Prater 1971; Menon 2014; Pradhan & Talmale 2012). It is an omnivore with a diet based largely on fruit and nuts that also includes...
Roadkills of the Three-striped Palm Squirrel in Sigur Plateau

Samson et al.

eggs, small birds, larvae, and insects (Prasad et al. 1966; Malhi & Kaur 1994; Malhi & Khushrupinder 1995). Squirrels mate throughout the year and build nests in treetops using grass and branches. Pregnancy lasts 34 to 45 days and produces 1–5 offspring; young are fully weaned at 10 weeks and reach sexual maturity at nine months. Animals can survive up to four years in the wild and >5 years in captivity (Weigl 2005). This study was undertaken to assess the threat to Three-striped Palm Squirrels from roadkills in the tropical forest of Sigur Plateau, Tamil Nadu in southern India.

STUDY AREA

Sigur Plateau is located in Mudumalai Tiger Reserve. It is a connective junction of Western and Eastern Ghats and harbors a diverse range of wildlife that includes Asian Elephant *Elephas maximus*, Tiger *Panthera tigris*, Leopard *Panthera pardus*, Gaur *Bos gaurus*, Chital *Axis axis*, Sambar *Rusa unicolor*, and other mammals (Ramakrishnan & Saravanamuthu 2012), as well as birds such as Endangered and Critically Endangered vultures including the Long-billed Vulture *Gyps indicus*, White-rumped Vulture *Gyps bengalensis*, Red-headed Vulture *Sacrogyps calvus*, and Egyptian Vulture *Neophron percnopterus* (Ramakrishnan et al. 2014; Samson et al. 2014, 2015). The corridor between the Western and Eastern Ghats is used by elephants, tiger, gaur, and other herbivores for seasonal migrations influenced by the southwest and northeast monsoons. The major streams of Sigur Plateau are the Moyar River, the Sigur River, the Avarahalla River, the Kedarhalla River, and the Gundattihalla River, which crisscross the Moyar Valley and drain into the Bhavanisagar Reservoir. Villages located within the Sigur Plateau are home to local communities and more recently to several tourist facilities that subsist mainly on the attractions of the diverse wildlife in the area surrounding Mudumalai Tiger Reserve.

Methods

Roadkills were recorded along the Udhagamandalam–Masinagudi state highway passing through Mudumalai Tiger Reserve (40km) (Figure 1). The local habitats are classified as dry thorn forest and dry deciduous forest (Gokula & Vijayan 1996; Ramakrishnan & Saravanamuthu 2012). Four visits per month were carried out between January 2014 and December 2016, mostly on weekends (Saturday or Sunday) by an observer and driver on a motorbike traveling at 10–15 km/h; observation times alternated between morning (06.00–08.00 h) and evening (16.00–18.00 h). Intermittent roadkills were also observed by forest officials and drivers, which when verified were included in the totals. For each kill the information recorded included the location, surrounding area (forest, human habitation, plantation), habitat type,
and state & sex of dead animals, which when possible were removed from the road to avoid recounting.

RESULTS

A total of 497 individual Three-striped Palm Squirrels (Figure 1; Image 1) were recorded as roadkill victims in 144 visits covering 5,760km, for an encounter rate (ER) of 0.09 individuals/km/month. Most kills were recorded as fresh (n=307). Males (n=220) were more frequently observed than females (n=145), although many were unidentified (n=132; Figure 1). Three-hundred-and-eighty-seven kills were observed over 33km of road in thorn forest habitats (ER=0.08 individuals/km/month), and 110 in dry deciduous forest (7km; ER=0.11 individuals/km/month) (Table 2). More roadkills were recorded in forest habitats (n=354; ER=0.078 individuals/km/month) followed by human habitation (n=89; ER=0.08 individuals/km/month), and plantations (n=54; ER=0.57 individuals/km/month). The roadkill results show significant variation $R^2=0.995$ year by year 2014 (n=148; 12.33±1.25; ER=0.08 individuals/km/month), 2015 (n=165; 13.75±1.55; ER=0.08 individuals/km/month), and 2016 (n=184; 15.33±1.58; ER=0.10 individuals/km/month) (Figure 2). Month-wise analyses of the roadkills show that May (n=75; 25±1.15) had more number of roadkills followed by December (n=61; 20.33±1.76), April (n=48; 16±1.15), November (n=47; 15.66±1.45) March (n=42; 14±1.15), and January (n=41; 13.66±1.45) (Figure 2); and significant variations were observed between month-wise data and the year-wise data (F=11.12 p= 0.005). The season-wise data revealed that winter (December–March) (n=176; 14.66±1.19; ER= 0.09 individuals/km/month) and summer (pre-monsoon) (April–June) (n=156; 17.33±2.12; ER= 0.11 individuals/km/month) seasons recorded more kills compared to post-monsoon (October–November) (n=83; 9.11 ± 0.78; ER= 0.09 individuals/km/month) and monsoon seasons (July–September) (n=82; 13.83±1.07; ER= 0.06 individuals/km/month) (Figure 3; Table 1).
Roadkills of the Three-striped Palm Squirrel in Sigur Plateau

Samson et al.

Road surface for sunbathing, it seemed to be the reason study indicating that Three-striped Palm Squirrel use the dusk in the present study also corroborate the previous of Three-striped Palm Squirrel are observed at dawn and dusk (Mendez-Carvajal et al. 2016). Samson et al. (2016) recorded that most fresh roadkills are easily tamed by humans and easily adapt to human habitation, plantations, and gardens (Molur et al. 2005). Three-striped Palm Squirrel live in diverse habitats but mainly occur in tropical forests and around human habitation (Molur et al. 2005). The present study was carried out in two different vegetation structures in Sigur Plateau. Thorn forest had more roadkills compared to dry deciduous forest which indicated that Three-striped Palm Squirrels utilized thorn forest vegetation more. A considerable amount of roadkills was observed in human habitation as well as plantations. Three-striped Palm Squirrels are easily tamed by humans and easily adapt to human habitation, plantations, and gardens (Molur et al. 2005).

Sunbathing is one of the key activities for striped squirrel at dawn and dusk (Mendez-Carvajal et al. 2016). Samson et al. (2016) recorded that most fresh roadkills of Three-striped Palm Squirrel are observed at dawn and dusk in the present study also corroborate the previous study indicating that Three-striped Palm Squirrel use the road surface for sunbathing, it seemed to be the reason for the high death rate. Some incidences may have occurred related to eating the insect on the roads. The road and road allowances attract prey populations, in particular, small mammals and carrion, but also insects and worms that are washed out of the soil onto roads (Tabor 1974). According to the literature, individuals from this genus prefer insects as protein sources more than fruits and nuts when fruits and vegetation are in the same proportions (Prater 1971; Barnett & Prakash 1975; Tiwari 1990; Balasubramanian 1995; Parasara et al. 1997).

Winter and summer seasons recorded Three-striped Palm Squirrel roadkills because of very high traffic on the state highway passing through the Nilgiri North Forest Division at one end connected to the Interstate highway NH 67 at Theppakadu and Ooty on other end. Generally, winter and summer are the best seasons to visit Udhaagamandalam and that is a reason for high vehicular traffic intensity resulting in the high number of roadkills. Similarly, significant number of roadkills were also found in Mudumalai Tiger Reserve due to local vehicular movement as well as wildlife safaris (Samson et al. 2016).

Discussion

This study targeted a single species affected by linear construction like road networks. In fragmented habitats, linking route ways enhance the movements of small mammals (Coffman et al. 2001). Medium and large-sized mammals are particularly at risk, especially when the emergence of young coincides with high traffic volumes (Oxley et al. 1974). The present study shows that males are frequently killed rather than females. Linear construction appears to affect the movement of males and females (Davis-Born & Wolff 2000). Various species show seasonal peaks in accident rates often with a higher percentage of males being killed (Davies et al. 1987; Rotar & Adamic 1997; van Langevelde & Jaarsma 1997; Mead 1997; Reeve & Huijser 1999). This suggests that breeding or dispersal behavior may be partly responsible (Moshe & Mayer 1998). Three-striped Palm Squirrel roadkills because of very high traffic on the state highway passing through the Nilgiri North Forest Division at one end connected to the Interstate highway NH 67 at Theppakadu and Ooty on other end. Generally, winter and summer are the best seasons to visit Udhaagamandalam and that is a reason for high vehicular traffic intensity resulting in the high number of roadkills. Similarly, significant number of roadkills were also found in Mudumalai Tiger Reserve due to local vehicular movement as well as wildlife safaris (Samson et al. 2016).

According to the literature, habitat loss and degradation due to agro-industry farming, small-scale logging, human encroachments, invasive alien species, and hunting for local consumption purposes are minor threats to the Three-striped Palm Squirrel population (IUCN Red List Data 2016). The present study explored the current major threat in the present scenario. An urgent long-term study is needed to better understand the impact of roads on the ecology of the Three-striped Palm Squirrel.

References

Malhi, C.S. & K. Kaur (1994). Responses of Funambulus pennantii...

Editorial

Pakshiranjan Lakshminarasimhan: a plant taxonomist who loved plants and people alike
— Mandra N. Datar, Pp. 16195–16203

Communications

The worrisome conservation status of ecosystems within the distribution range of the Spectacled Bear Tremarctos ornatus (Mammalia: Carnivora: Ursidae) in Ecuador
— José Guerrero-Casado & Ramón H. Zambrano, Pp. 16204–16209

Living with Leopard Panthera pardus fusca (Mammalia: Carnivora: Felidae): livestock depredation and community perception in Kalakkad-Mundanthurai Tiger Reserve, southern Western Ghat
— Bawa Mohitlal Krishnakumar, Rajarathinavelu Nagarajan & Kanagaraj Muthamisz Selvan, Pp. 16210–16218

An updated checklist of mammals of Odisha, India
— Subrat Debata & Himanshu Shelkar Palei, Pp. 16219–16229

Negative human-wildlife interactions in traditional agroforestry systems in Assam, India
— Yashmita-Ulman, Manoj Singh, Awadhesh Kumar & Madhubala Sharma, Pp. 16230–16238

Prevalence and morphotype diversity of Trichuris species and other soil-transmitted helminths in captive non-human primates in northern Nigeria
— Joshua Kamani, James P. Yidawi, Aliyu Sada, Emmanuel G. Msheliza & Usman A. Turaki, Pp. 16239–16244

Detection of hemoparasites in bats, Bangladesh

Ecology of the Critically Endangered Singidia Tilapia (Teleostei: Cichlidae: Oreochromis esculentus) of lake Kayanja, Uganda and its conservation implications
— Richard Olwe, Herbert Nakiyenda, Elias Muhumuza, Samuel Bassa, Anthony Taabu, Munyaho & Winnie Nkalubo, Pp. 16251–16256

Length-weight relationships of two conservation-concern mahseers (Teleostei: Cyprinidae: Tor): of the river Cauvery, Karnataka, India

The identity and distribution of Bhavania annandalei Hora, 1920 (Cypriniformes: Balitoridae), a hillstream loach endemic to the Western Ghats of India

Records of two toads Duttaphrynus scaber and D. stomaticus (Amphibia: Anura: Bufonidae) from southeastern India

Some rare damselflies and dragonflies (Odonata: Zygoptera and Anisoptera) in Ukraine: new records, notes on distribution, and habitat preferences
— Alexander V. Martynov, Pp. 16279–16284

Floristic diversity of Anjaneri Hills, Maharashtra, India
— Sanjay Gajanan Auti, Sharad Suresh Kambele, Kumar Vinod Chhotupuri Gosavi & Arun Nivrutti Chandre, Pp. 16295–16313

A checklist of macrofungi (mushroom) diversity and distribution in the forests of Tripura, India
— Sanjit Debnath, Ramesh Chandra Upadhyay, Rahul Saha, Koushik Majumdar, Panna Das & Ajay Krishna Saha, Pp. 16314–16346

Short Communications

A threat assessment of Three-striped Palm Squirrel Funambulus palmarum (Mammalia: Rodentia: Sciuridae) from roadkills in Sigur Plateau, Mudumalai Tiger Reserve, Tamil Nadu, India
— Arockianathan Samson, Balasundaram Ramakrishnan & Jabamalainathan Leonaprincy, Pp. 16347–16351

Impact of vehicular traffic on birds in Tiruchirappalli District, Tamil Nadu, India
— T. Siva & P. Neelalanaryan, Pp. 16352–16356

Ichthyofaunal diversity of Manjeera Reservoir, Manjeera Wildlife Sanctuary, Telangana, India
— Kante Krishna Prasad, Mohammad Younus & Chelmla Srinivasulu, Pp. 16357–16367

New distribution record of the endemic and critically endangered Giant Staghorn Fern Platycerium grande (Fee) Kunze (Polypodiaceae) in central Mindanao

Notes

First photographic record of the Dhole Cuon alpinus (Mammalia: Carnivora: Canidae) from the Sirumalai Hills in Tamil Nadu, India
— B.M. Krishnakumar & M. Eric Ramanujam, Pp. 16373–16376

Tracing heavy metals in urban ecosystems through the study of bat guano
— Jìthin Johnson & Moncey Vincent, Pp. 16377–16379

Population dynamics and management strategies for the invasive African Catfish Clarias gariepinus (Burchell, 1822) in the Western Ghat hotspot
— Kuttanelloor Roshni, Cheluparuth Radhakrishnan Renjithkumar, Rajeev Raghavan, Neellesh Dahanukar & Kutty Ranjeet, Pp. 16380–16384

First records of the black widow spider Latrodectus jugularis (Thorell, 1898) (Araneae: Theridiidae) from Nepal
— Binu Shrestha & Tobias Dörr, Pp. 16385–16388

First report of the assassin bug Epidaus wangi (Heteroptera: Reduviidae: Harpactorinae) from India
— Swapnil S. Boyane & Hemant V. Ghathe, Pp. 16389–16391

Observations of the damselfly Platylestes cf. platystylus Rambur, 1842 (Insecta: Odonata: Zygoptera: Lestidae) from peninsular India
— K.J. Rison & A. Vivek Chandran, Pp. 16392–16395

Hermiunium longiligobatum (Orchidaceae), a new record for Bhutan
— Uyen Dechen, Tandin Wangchuk & Lam Norbu, Pp. 16396–16398

Recent record of a threatened holoparasitic plant Sopria himalayana Griff. in Meiao Wildlife Sanctuary, Arunachal Pradesh, India
— Arif Ahmad, Amit Kumar, Gopal Singh Rawat & G.V. Gopi, Pp. 16399–16401

Eleven new records of lichens to the state of Kerala, India

www.threatenedtaxa.org

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

July 2020 | Vol. 12 | No. 10 | Pages: 16195–16406
Date of Publication: 26 July 2020 (Online & Print)
DOI: 10.11609/jott.2020.12.10.16195-16406