First report of Mantibaria mantis (Dodd) (Hymenoptera: Sclionidae: Sclioninae) from India and additional descriptors for the species

Kamalanathan Veenakumari & Prashanth Mohanraj

26 June 2017 | Vol. 9 | No. 6 | Pp. 10347–10350
10.11609/jott.2936.9.6.10347–10350
FIRST REPORT OF Mantibaria mantis (Dodd) (Hymenoptera: Scelionidae: Scelioninae) FROM INDIA AND ADDITIONAL DESCRIPTORS FOR THE SPECIES

Kamalanathan Veenakumari 1 & Prashanth Mohanraj 2

1,2 ICAR-National Bureau of Agricultural Insect Resources, P.B. No. 2491, Hebbal, Bengaluru, Karnataka 560024, India
1 veenapmraj@gmail.com (corresponding author), 2 veenaprashi@rediffmail.com

The genus Mantibaria, egg parasitoids of praying mantids, was erected by Kirby in 1900. Masner (1976) mentions it as a most unusual genus in Scelionidae due to its ectoparasitic habit of feeding on the haemolymph of adult mantids during its phoretic phase. This genus is represented all over the world and very recently from the new world too (Masner 1976; Oliveira & Schoeninnger 2017). There are four species of Mantibaria, viz.: mantis (Dodd) from Australia, seefelderiana (De Stefani) from the Palaearctic region, solygiae Risbec from the Afrotropical region, and kerouaci Veenakumari & Rajmohana from India (Dodd 1913; Kieffer 1926; Masner 1976; Veenakumari et al. 2012; Johnson 1992, 2016). Mineo & Szabó (1978) redescribed M. seefelderiana and designated a neotype for the species ‘owing to the loss of the original type material’. Two males of M. solygiae were reared from the ootheca of the mantid, Soligia sulcatifrons Serville, 1893 while M. mantis was reared from the ootheca of Mantis religiosa (Linnaeus 1758). Chopard (1922) and Rabaud (1922) have given a detailed account of the biology of Mantibaria. These phoretic wasps are known to stay under the wings of the mantids. When the host insect lays its eggs, they descend onto the host egg mass and parasitize the eggs before the ootheca hardens. So far only one species, M. kerouaci was known from India (Veenakumari et al. 2012). M. mantis has so far been reported only from Australia.

We now report M. mantis from India and provide additional descriptors along with images, since the earlier description of the species is inadequate for the identification of the species.

Morphological terminology follows Masner (1976, 1980), Mikó et al. (2007, 2010) and Burks et al. (2013). Both the specimens of the present study were collected by sweep netting (SN). Specimens were mounted on point-card tips. The descriptions and imaging were carried out with a Leica M205A stereomicroscope, with 1× objective equipped with a Leica DFC-500 digital camera. Specimens examined in this study are deposited in the ICAR-National Bureau of Agricultural Insect Resources, Bangalore, India. Both specimens were collected by K. Veenakumari.

The following abbreviations are used in the description of the taxa. All the measurements are taken as per Mikó et al. (2010). HL-Head length; HW-Head width; HH-Head height; FCI-Frontal cephalic index (HW/HH); LCI-Lateral cephalic index (HH/HL); A1 - A10-Antennomeres 1–10 (A1=Scape, A2=Pedicel); L-Length; W-Width; H-Height; OOL-Ocellar-ocular length; POL-Posterior ocellar length; IOS-Interorbital space; Tm1–Tm5- Tarsomeres 1 to 5; T1–
T6-Metasomal tergites 1 to 7. Width of all metasomal tergites taken anteriorly.

Though over 80 oothecae of mantids were collected, none yielded the egg parasitoid *Mantibaria*. They only yielded three species of *Podagron* Spinola (Torymidae) and an unidentified species of Eupelmidae.

Mantibaria mants (Dodd)

(Images 1–10)

Rieliomorpha mants Dodd, 1913: 156
Rielia mants Kieffer, 1926, 279, 280
Mantibaria mants Masner, 1976, 54:

Material examined: (ICAR/NBAIR/P928), India: Karnataka, Chintamani, College of Sericulture, 13.9027778 N & 78.13888889 E, 858m, SN, 28.ix.2011, 1 female; (ICAR/NBAIR/P929) Karnataka: Tumkur, Stud farm, 13.0331111 N & 77.0633333 E, 784m, SN, 11.ix.2011, 1 female, coll. K. Veenakumari. Both the specimens are deposited at the National Bureau of Agricultural Insect Resources, Bengaluru. These specimens were identified as *M. mants* by comparison with the images of the holotype provided in Platygastridae Planetary Biodiversity Inventory (http://osuc.biosci.ohio-state.edu/hymDB/eol_scelionidae.home)

Female. Body length=2.781 mm (m=2.247 (1.713-2.781) mm; SD=0.755, n=2)

Color: Dorsally, head and mesosoma dark brown, metasoma a shade paler except for orange posterior tergites; ventrally mesosoma dark brown, metasoma medially and laterally yellow; eyes black; frons, gena orange; antennae orange except dark brown A2; tegula and all legs bright yellow; wings hyaline (Images 1–3).

Head (Figs 1, 2, 3, 5, 7, 10): FC=1.90; LCI=0.89; IOS 0.6x width of head; shortest postero to anterior ocellus; eyes large (L: W=62.5:54.7) with sparse short setae; POL>OOL and OOL and LOL equal; ratio of POL:OOL:LOL in ratio of 17.5:8.6:8.6; frons, vertex and gena with fine granulate microsculpture; hypercippital carina absent; a faint ridge present between lateral ocelli and inner orbit; faint elongate striae present from base of occipital carina towards vertex; clypeus (L: W=7.5:15.3) reticulate; mandible (L: W=6.3:13.0) with three black teeth; antenna with ten antennomeres; length and width of antennomeres A1–A10 in ratio of 26.1:6.9:7.6:5.5, 5.4:4.7, 3.8:6.4, 3.7:6.0, 3.2:5.7, 3.4:5.9, 3.0:6.4, 3.5:6.0, 13.8:6.1, respectively; A10 much elongate, 0.53x as long as A1, posteriorly truncated, becoming narrow apically.

Mesosoma (Images 5,8,9): Mesoscutum (L: W=54.7:62.5) with same sculpture as that on head; notaull absent; a short parapsidal furrow present latero-medially; pronotum visible from above; lateral pronotal area, mesopleuron and metapleuron with same sculpture as on head with reticulations of various sizes; epomial carina weak; netrion absent; mesopleuron with a short sternaulus; mesopleural depression distinct; mesopleural carina extending up to hind tegula; spiracles very distinct; mesoscutellum (L: W=24.9:41.4) with granular microsculpture and a short incomplete median keel; posterior margin of mesoscutellum not straight, extending mediadly; scutocellular sulcus not foveate; metascutellum broad with same sculpture as that on mesoscutellum; propodeum broad with coarse sculpture, with three longitudinal carinae medially; anterior margin of propodeum carinated which is flexed laterally with a striated triangular area above it. Wings present but broken mediadly. All legs highly modified; femur (L: W=41.4:16.2) and tibia (L: W=33.7:12.0) very broad; length and width of tarsal segments Tm1- Tm5 in ratio of 4.4:4.6, 2.0:4.6, 2.1:4.7, 2.0:4.5, 9.0:6.7 respectively; Tm5 almost 1.5x as long as Tm2–Tm4 together; two claws (L: W= 5.7:3.5) and an enlarged...
Empodium (L: W=8.0:5.3) present (Image 4).

Metasoma (Fig. 6): (L: W= 98.9:69.7); all tergites with uniform granular microsculpture; brown setae present on metasoma, setae denser laterally; length and width of tergites T1–T7 in ratio of 19.6:40.5, 18.5:64.0, 17.7:69.0, 16.4:66.8, 14.2:57.5, 10.1:39.0, 6.5:19.8, respectively; T7 with two sensory plates.

Discussion

Only four species of Mantibaria have been described worldwide. Though tropical countries like India are rich both in platygastroids and mantids, specimens of Mantibaria are rarely collected unless they are obtained from rearing of parasitized oothecae. During recent studies, Platygastroidea were collected from several regions in India in yellow pan traps, Malaise traps, pitfall traps, flight intercept traps and sweep nets, however, it was sweep nets alone that yielded five specimens of Mantibaria over a span of eight years. This pattern was identical to that of other phoretic species of Platygastroidea such as Proteleanomus Kieffer and Scelioerdo Muesebeck (Veenakumari et al. 2012; Veenakumari & Mohanraj 2015). Mantibaria females exhibit an obligate phoretic relationship as they shed their wings after hitching onto their hosts thus facilitating easy entry into the frothy mantid egg mass before it solidifies (Bin 1985; Couturier 1941). Rarity in collections may thus be attributed to the phoretic nature of these parasitoids in which the adults spend most of their lives on the host insect.

M. mantsi has so far been reported only from Australia. Two species of Mantibaria, M. mantis (Australia) and M. seefelderiana (Africa, European and Indo-Malaysian regions) appear to be conspecific as no significant differences are noticeable between them in the images of the types hosted on the Platygastroidea website (http://osuc.biosci.ohio-state.edu/hymDB/ eol_scelionidae.home). Masner (1976) and Galloway & Austin (1984) too were of the same opinion; however, as Galloway & Austin (1984) mention, this can only be ascertained when the types are studied.

References

Milko, I., L. Masner, & A.R. Deans (2010). World revision of Xenenerus...
Mantibaria mantis from India

Veenakumari & Mohanraj

Articles

Co-occurrence patterns of fish communities in littorals of three floodplain lakes of the Orinoco River, Venezuela
-- Gabriela E. Echevarría & Nirson González, Pp. 10249–10260

Genetic diversity of the Green Turtle (Testudines: Cheloniidae: Chelonia mydas (Linnaeus, 1758)) population nesting at Kosgoda Rookery, Sri Lanka

Identity of Sphaerotheca pluvialis (Jerdon, 1853) and other available names among the burrowing frogs (Anura: Dicroglossidae) of South Asia
-- Neellesh Dahanukar, Shauri Sulakhe & Anand Padhye, Pp. 10269–10285

Sphaerotheca pashchima, a new species of burrowing frog (Anura: Dicroglossidae) from western India
-- Anand Padhye, Neellesh Dahanukar, Shauri Sulakhe, Nikhil Dandekar, Sunil Limaye & Kirti Jamdade, Pp. 10286–10296

Population status and species diversity of wetland birds in the Rapti and Narayani rivers and associated wetlands of Chitwan National Park, Nepal
-- Bed Bahadur Khadka, Paras Mani Acharya & Sunil Lal Rajbhandari, Pp. 10297–10306

Communications

Wildlife hunting by indigenous people in a Philippine protected area: a perspective from Mt. Apo National Park, Mindanao Island
-- Krizler Cejuela Tanalgo, Pp. 10307–10313

Pupal shape and size dimorphism in Aedes albopictus (Skuse, 1894) (Diptera: Culicidae)
-- Elvira Sánchez, Daniel Castillo & Jonathan Liria, Pp. 10314–10319

Short Communications

Occurrence and conservation of the Indian Leopard (Mammalia: Carnivora: Felidae: Panthera pardus) in Cox’s Bazar District of Bangladesh

A checklist of the avian fauna of Chittagong University campus, Bangladesh

Diversity and new records of intertidal hermit crabs of the genus Clibanarius (Crustacea: Decapoda: Diogenidae) from Gujarat coast off the northern Arabian Sea, with two new records for the mainland Indian coastline
-- Pradip Kachhia, Jatin Raval, Paresh Poriya & Rahul Kundu, Pp. 10334–10339

Notes

Four species of Commelinaceae, as additions to Andhra Pradesh, India
-- S. Salamma, M. Chennakesavulu Naik, M. Anil Kumar, A. Sreenath & B. Ravi Prasad Rao, Pp. 10340–10344

Trematode infestation in coral colonies at Poshtra Reef, Gulf of Kachchh Marine National Park, Gujarat, India

First report of Mantibaria mantis (Dodd) (Hymenoptera: Scelionidae: Scelioninae) from India and additional descriptors for the species
-- Kamalanathan Veenakumari & Prashanth Mohanraj, Pp. 10347–10350

A new record of Tenodera fasciata (Olivier, 1792) (Insecta: Mantodea: Mantidae: Mantinae) for western India
-- Gopal Ambrushi Raut & Sunil Madhukar Gaikwad, Pp. 10351–10354

First records of butterflies Anthene emolus emolus (Godart, [1924]) (Lepidoptera: Lycaenidae: Polyommatinae) and Gandaca harina assamica Moore, [1906] (Lepidoptera: Pieridae: Coliadinae) from Kumaon, Uttarakhand, India
-- Sanjay Sondhi, Pp. 10355–10357

A new locality record of the rare Anomalous Nawab Polyura agrarius (Swinhoe, 1887) (Lepidoptera: Nymphalidae: Charaxinae) from central India
-- Deepika Mehra, Jagatjot Singh Flora & Vivek Sharma, Pp. 10358–10360

Taxonomic note about Willow Ermine Moth Yponomeuta rorellus Hübner (Lepidoptera: Yponomeutidae) from Ladakh division of Jammu & Kashmir, India
-- Mudasir Ahmad Dar, Shahid Ali Akbar & Govindasamy Mahendiran, Pp. 10361–10364

First record of hingefish (Cyclostomata: Myxinidae) in Indian waters
-- B. Fernholm, A. Biju Kumar & Michael Norén, Pp. 10365–10368