ARTICLE

CO-OCCURRENCE PATTERNS OF FISH COMMUNITIES IN LITTORALS OF THREE FLOODPLAIN LAKES OF THE ORINOCO RIVER, VENEZUELA

Gabriela E. Echevarría & Nirson González

26 June 2017 | Vol. 9 | No. 6 | Pp. 10249–10260
10.11609/jott.2710.9.6.10249-10260
CO-OCCURRENCE PATTERNS OF FISH COMMUNITIES IN LITORALS OF THREE FLOODPLAIN LAKES OF THE ORINOCO RIVER, VENEZUELA

Gabriela E. Echevarría 1 & Nirson González 2

1 Laboratorio de Biología de Organismos, Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Avenida Panamericana, kilómetro 11, Altos de Pipe, Caracas 1020-A Dirección postal apartado 21827, Miranda, Venezuela
2 Laboratorio de Ecología de Peces, Estación de Investigaciones Hidrobiológicas de Guayana, Fundación La Salle de Ciencias Naturales. Campus Guayana, Avenida Alonso de Herrera, San Félix, 8051, Bolívar, Venezuela
hydropsichidae@gmail.com (corresponding author), 2 nirson.gonzalez@fundacionlasalle.org.ve

Abstract: The co-occurrence patterns of fish communities in the littorals of three lagoons of the Orinoco River floodplain in Venezuela were studied during four hydrological phases: low, rising, high and falling waters, from 2008–2009, using null models. The analyses were made separately for each floodplain lake and for each habitat type within them. During low waters only one lake showed a segregated pattern in beaches covered with leaf litter, whereas in the other floodplain lakes the communities were randomly assembled in all habitats during the four hydrological phases. Despite the absence of a significant overall structure, several significantly aggregated and segregated species pairs were observed in the three lakes. The temporal variation might be the main factor responsible for the co-occurrence patterns observed in these floodplain lakes due to the periodic reshuffling of littoral habitats.

Keywords: Hydrological phases, local scale, null models, spatial segregation, temporal variation.

Resumen: Se estudiaron los patrones de coexistencia de las comunidades de peces en los litorales de tres lagunas de la planicie de inundación del río Orinoco durante cuatro fases hidrológicas: aguas bajas, ascenso, aguas altas y retirada de aguas desde 2008 a 2009, a través de la comparación mediante modelos nulos. Los análisis se hicieron por separado para cada laguna y para cada tipo de hábitat dentro de cada laguna. Sólo en una de las lagunas se detectó un patrón segregado, en playas con fondos cubiertos de hojarasca, mientras que en las otras lagunas las comunidades estuvieron estructuradas al azar. A pesar de la ausencia de una estructura significativa, varios pares de especies significativamente agregados y segregados fueron observados en las tres lagunas. La variación temporal sería la principal responsable de los patrones de coexistencia de los ensambles de estas lagunas, debido a la constante reorganización de los hábitats en los litorales.

Editor: Neelesh Dahanukar, Indian Institute of Science Education and Research (IISER), Pune, India. Date of publication: 26 June 2017 (online & print)
Manuscript details: Ms # 2710 | Received 09 April 2016 | Final received 18 February 2017 | Finally accepted 30 May 2017
Copyright: © Echevarría & González 2017. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use of this article in any medium, reproduction and distribution by providing adequate credit to the authors and the source of publication.
Funding: This research was co-funded by Wildlife Conservation Society - Programa de Conservación de la Cuenca del Río Caura and Fundación La Salle de Ciencias Naturales through Conoco Philips.
Competing interests: The authors declare no competing interests.
Author Details: GABRIELA ECHEVARRÍA recently completed her PhD studies in ecology in the Venezuelan Institute of Scientific Research. NIRSON GONZÁLEZ is a researcher in the Station of Hydrobiological Research of La Salle Foundation of Natural Sciences, where he is in charge of the Laboratory of Fish Ecology and the Collection of Fishes of Guayana.
Author Contribution: The first author designed the study and wrote the manuscript. The second author carried out the field surveys of this study and compiled the data.
Acknowledgements: The authors wish to thank Carmen Montaña and Galo Buitrón Jurado for their suggestions to improve earlier versions of the manuscript. The data from Aricagua and Paramuto were obtained as part of the activities of the Program of Conservation of the Caura River Basin led by Wildlife Conservation Society. The sampling activities in Mamo were financed by Conoco Philips through the Organic Law for Scientific Investigation, Ministry of Science and Technology of Venezuela, through the project CON-EDHIG 23940 carried out by the staff of the Estación de Investigaciones Hidrobiológicas de Guayana of Fundación La Salle de Ciencias Naturales. Thanks also to Félix Daza and Marly Medina for their assistance in the field and Francis Mass for her assistance in the identification of the fishes.
INTRODUCTION

The recognition of patterns of species co-occurrence within communities, as well as their causative mechanisms, has been a main goal in ecology. Recent models have assumed that communities are randomly assembled (Hubbell 2001); however, evidence from freshwater fish communities in tropical floodplains highlights the importance in their organization of factors such as biotic interactions (Winemiller 1996; de Mérona & de Mérona 2004; Barili et al. 2011), species–habitat associations (Peres-Neto 2004; Rodrigues et al. 2013) and environmental filtering (Rondón Suárez et al. 2004; de Melo et al. 2009).

Null models of species co-occurrence have been applied to infer the influence of biotic interactions in the structure of communities. Since Diamond (1975) proposed his assembly rules, several null models of species co-occurrence have been proposed (Connor & Simberloff 1979; Gotelli 2000). These have been employed to assess whether communities are randomly assembled or if they show aggregated or segregated patterns of species co-occurrences, and to identify the mechanisms behind those patterns. A segregated pattern refers to the tendency of the species within a community to avoid each other generating a checkerboard arrangement, whereas an aggregated pattern indicates that species pairs coexist together (Stone & Roberts 1992). Diamond (1975) originally proposed that species with highly similar niches will segregate spatially, while aggregated species pairs will indicate a differentiation in niche dimensions; however, factors such as predation have also been proposed to produce segregated patterns within fish communities (Jackson et al. 1992).

The application of null models in the analysis of freshwater fish communities has produced mixed results regarding the mechanisms behind co-occurrence patterns. For example some authors have concluded that fish communities are structured by environmental conditions (Peres-Neto 2004; Hoeinghaus et al. 2006), while others have indicated that there is a combined influence of biotic interactions and environmental conditions (Jackson et al. 1992; Arrington et al. 2005). All have found that fish communities exhibit nonrandom patterns of species co-occurrence, supporting the idea that freshwater fish communities are governed by ecological filters (Götzenberger et al. 2011) either environmental or biotic.

Tropical floodplain fish communities inhabit highly seasonal environments. During dry periods fish experience low availability of food and suitable habitats. Reductions in the overlap of diets and habitat use occurs during this phase (Winemiller & Pianka 1990), which has been suggested to reduce interspecific competition (Winemiller 1996). During flooded periods rivers overflow their banks and water covers most of the plain, offering increased availability of food and connectivity among habitats (Junk & Wantzen 2004). Consequently, species are more randomly distributed (González et al. 2009; Fernandes et al. 2013). As a result, seasonal variations in water depth are accompanied by differences in the structure of fish communities (Lowe-McConnell 1975; Winemiller 1996).

Winemiller et al. (2008) pointed out that these communities are regulated by stochastic factors during rising waters, and that as water levels start to drop communities become regulated by density-dependent processes driven by food limitation and predation, giving place to patterns of spatial segregation. During rising and falling waters environmental conditions can change very quickly and communities may not have enough time to become saturated, consequently they exhibit random patterns of species co-occurrence (Arrington et al. 2005). In the littoral zones of tropical floodplains, seasonal variations in water depth make habitats expand and contract periodically, so changes in the structure of the fish communities are expected due to constant episodes of colonization and extinctions (Arrington & Winemiller 2006). Thus, these habitats are well suited for the study of species co-occurrence patterns throughout hydrological seasons at a local scale. At this spatial scale, interspecific interactions can generate biotic assembly rules in communities shaped by environmental conditions (Thor op et al. 2008; Götzenberger et al. 2011). As Arrington et al. (2005) stated, freshwater fish species co-occurrence patterns at a local scale still remain an open question. Another question that has not been sufficiently explored is how patterns change across hydrological phases.

The main goal of this study was to explore the spatial and temporal species co-occurrence patterns in the littorals of three floodplain lakes of the Orinoco River throughout one hydrological cycle. These floodplain lakes are characterized by high fish species diversity, and also by notable changes in environmental conditions across hydrological phases, which make them ideal to study temporal variation in species co-occurrence patterns. On February 2016, the Venezuel an National Executive approved a decree that commands the exploitation of gold, diamonds and other minerals for the area named the mining arch (Presidency of the Republic of Venezuela 2016), which encompasses almost the entire area of the
Fish communities in three floodplain lakes of Orinoco River

E. Chevarría & González

Orinoco River floodplain. Such mining activities threaten fish populations in this area, highlighting the importance of the present research.

First, we describe the fish communities found in the three lakes and assess their changes throughout hydrological phases. It was hypothesized that the fish communities in these littorals should exhibit a segregated pattern during low waters as a strategy to avoid interspecific competition and predation, and a random pattern during the rest of the hydrological cycle. Secondly, it was hypothesized that during low waters there should be a higher number of spatially segregated species pairs with respect to the other phases.

MATERIALS AND METHODS

Study area

The study was conducted in the floodplain of the middle Orinoco River. The lakes Aricagua (7.58N–65.16W - 7.54N–65.09W) and Paramuto (7.56N–65.01W - 7.53N–54.99W) are located close to the mouth of Caura River with the Orinoco in the southern bank of the Orinoco, at the northern end of the Guayana Shield. These two lakes are separated by a distance of 10.33km. Mamo (8.45N–63.15W - 8.4N–63.06W), is located at 234 from the other lakes, in the northern bank of the Orinoco. The physical and chemical characteristics of the water were obtained through measurements with an YSI 556-01 multiparametric probe: dissolved oxygen (mg/l), pH and conductivity (w/mk) and a measuring tape: water depth (m). (Fig. 1)

Samplings

Fishes were collected through diurnal seining (4m x 1.5m, 0.5cm mesh) from 2008–2009 covering the four phases of a hydrological cycle: August (HW), November (FW), February (LW) and May (RW). During each phase, 13 sites were sampled in Aricagua and Paramuto, and 20 in Mamo due to its greatest extension. Sampling sites were chosen if they had at least 10m through which the seine could be hauled. At each site, the seine was hauled three times through an approximate distance of 10m. In Aricagua the average distance between sites was of 2.24km (range 0.12–5.76 km), in Paramuto of 1.09km (0.60–2.15 km) and in Mamo of 1.56km (0.093–4.70 km). The habitats were characterized by a visual inspection, according to the area covered by each type of substrate (>50%). See Table 1 for the types of habitats per season and the number of sites per habitats sampled.

All collected individuals were fixed in 10% formalin, and transported to the laboratory of Fish Ecology of Fundación La Salle de Ciencias Naturales, Campus Guayana, where they were identified to the species level when possible (Machado-Allison 1973; Géry 1977; Vari 1989a,b; Walsh 1990; Taphorn 1992; Mago-Leccia 1994;...
Fish communities in three floodplain lakes of Orinoco River

E chevarría & González

Data analysis

To explore the organization patterns of the fish communities in the littorals of the three floodplain lakes according to the habitat types and hydrological phases, non-metric multidimensional scaling (NMDS) ordinations were carried out using Bray-Curtis similarity measures on log (x+1) transformed abundances per species at each site. Permutation based multivariate analyses of variance (PERMANOVA) (Clarke & Warwick 2001) based on 1000 randomizations were used to determine whether the fish assemblages formed significantly different clusters. The null hypothesis tested was of no difference in community compositions, with the significance tested checked at α = 0.05. The NMDS and PERMANOVA analyses were carried out with the software PRIMER (Clarke & Gorley 2006).

Table 1. Habitats and number of sites per habitat sampled in the lakes during each hydrological phase (LF: beaches with bottoms covered with leaf litter, AV: beaches with patches of aquatic vegetation, FS: flooded shrubs, WD: beaches with patches of woody debris, G: grasslands, SB: sand beaches).

<table>
<thead>
<tr>
<th>Hydrological phase</th>
<th>Habitat</th>
<th>Aricagua</th>
<th>Paramuto</th>
<th>Mamo</th>
</tr>
</thead>
<tbody>
<tr>
<td>High waters</td>
<td>LF</td>
<td>13</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>AV</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>FS</td>
<td>-</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>WD</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Falling waters</td>
<td>LF</td>
<td>5</td>
<td>13</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>AV</td>
<td>8</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>-</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>Low waters</td>
<td>LF</td>
<td>9</td>
<td>7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>AV</td>
<td>4</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>WD</td>
<td>-</td>
<td>6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
<tr>
<td>Rising waters</td>
<td>LF</td>
<td>13</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>AV</td>
<td>-</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>WD</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>-</td>
<td>-</td>
<td>9</td>
</tr>
</tbody>
</table>

Pair-wise comparisons among hydrological phases and among habitats were also carried out with PRIMER.

Species presence-absence matrices per site were constructed with data from each floodplain lake to run null models of co-occurrence. These were conducted separately for each habitat type and hydrological phase in order to avoid biases raised from variation due to habitat heterogeneity. Those habitats with less than five sites per hydrological phase were excluded from the analyses, as well as the sites with only one species, which resulted in five observed matrices from Aricagua, five from Paramuto and eight from Mamo. The following habitats were excluded from the analyses because a lack of sufficient sites (less than five): Aricagua: beaches with patches of aquatic vegetation - low waters; Paramuto: flooded shrubs - high waters, beaches with patches of woody debris - high and rising waters; Mamo: flooded grassland - high waters.

Simulated matrices were constructed using an algorithm, which maintains the rows (species) fixed and the columns (sites) equiprobable. This algorithm assumes that each site has the same probabilities of being colonized, but the dispersal abilities of the species are based on the data in the observed matrices. It has good type I error properties and is appropriate to analyze sampling lists obtained through the same sampling effort (Gotelli 2000). The C-score (average number of significant pairs in a matrix) was chosen as the metric of spatial segregation. This score performs well with the fixed - equiprobable algorithm (Gotelli 2000; Ulrich & Gotelli 2013). For each of the 18 observed matrices, the C-score was calculated and compared with C-scores from 9,999 simulated matrices.

The Z index was used to identify the significance of the C-score. Values of Z below -2 or above 2 indicate a statistical significance approximate to 5% error (Ulrich 2008). The decision criteria also considered that the observed value of the C-score was greater than the simulated. Non-significant C-scores denote random species co-occurrence while significant ones indicate a more segregated pattern of co-occurrence than expected by chance (Ulrich 2008). The null model analyses were performed in the software PAIRS (Ulrich 2008). This program also renders those pairs of species within a matrix that show significant aggregation or segregation (p <0.05), with their respective C-scores and Z values.

Positive scores of the Z index indicate segregation between species pairs, whereas negative ones indicate aggregation.
RESULTS

Fish communities
The three lakes differed in their environmental conditions. Aricagua and Paramuto tended to be more acidic, whereas Mamo showed higher water pH and conductivity (Table 2). Mamo was the deepest of the three. The water level fluctuated around 1.5 m in Aricagua, 2.1 m in Paramuto and 2.6 m in Mamo across hydrological phases. In Mamo 193 fish species were registered, 103 in Aricagua and 98 in Paramuto. The complete list of collected fish species is shown in Appendix 1. The number of species used in the co-occurrence analyses (those collected more than once) and their abundances per season and per habitat are shown in Table 2. Overall, the fish communities were significantly different among lakes (P<0.05) but not among hydrological phases (Fig. 2). Nevertheless, within each lake, there were significant differences (P<0.05) among habitat types as well as among hydrological phases (Fig. 3).

Pair-wise tests detected significant differences between all hydrological phases in Aricagua (HW, LW: t=2.28, P=0.001; HW, FW: t=1.78, P=0.001; HW, RW: t=1.74, P=0.001; LW, FW: t=1.88, P=0.001; LW, RW: t=2.46, P=0.001; FW, RW: t=1.93, P=0.001). In Mamo there were significant differences between all habitats (G, AV: t=1.52, P=0.01; G, SB: t=1.36, P=0.02; AV, SB: t=0.03, P=0.03), and also between all hydrological phases (HW, LW: t=2.28, P=0.001; HW, FW: t=1.65, P=0.002; HW, RW: t=2.05, P=0.001; LW, FW: t=2.50, P=0.001; LW, RW: t=2.41, P=0.001; FW, RW: t=2.32, P=0.001). In Paramuto, there were significant differences between FS and WD (t=1.22, P=0.19). The other habitats were marginally different (FS, LF: t=1.11, P=0.07; LF, WD: t=1.13, P=0.08). Finally, in this lake there were significant differences in composition between all hydrological phases as well (HW, LW: t=1.80, P=0.001; HW, FW: t=1.72, P=0.001; HW, RW: t=1.68, P=0.001; LW, FW: t=1.53, P=0.001; LW, RW: t=1.80, P=0.001; FW, RW: t=1.48, P=0.002).

Co-occurrence patterns of the fish communities
The null model analyses in the three floodplain lakes indicated that the co-occurrence patterns of the fish communities were not different from random during the four hydrological phases. The only exception was in Mamo during low waters in sandy beaches (Table 3). The latter scored an observed C index significantly higher than the simulated, showing a segregated pattern.

Species pairs with significant patterns of co-occurrence
The highest number of pairs with significant patterns of co-occurrence was registered in Aricagua. Most pairs were observed during low waters in Aricagua, whereas in Mamo they were observed during falling and low waters (Table 4). In Paramuto there were only two significantly
co-occurring pairs during raising waters, and one during falling waters. Contrary to what had been hypothesized, most pairs showed an aggregated pattern in Aricagua, Paramuto and Mamo (Table 4).

Overall, the highest number of significantly co-occurring species pairs was found in the beaches with bottoms of leaf litter in Aricagua, with 15 species showing an aggregate pattern and eight a segregated pattern (Table 4, Fig. 4). The analyses did not detect any significantly co-occurring species pair in the flooded grasses or in the beaches with patches of woody debris (Table 4).

In Aricagua during low waters the small *Microcharacidium eletroiodes* (Characiformes, Crenuchidae) was most frequently segregated with other species, including the Characiformes *Semaprochilodus kneri* and *Triportheus auritus*, the catfish *Pimelodus blochii* and the cichlid *Geophagus* sp. (Fig. 4). Other segregated pairs were formed by the small engraulids *Anchoviella manamensis* and *A. perezi* with *P. blochii* and the hemiodontid *Hemiodus unimaculatus* respectively. On the other hand, *S. kneri*, *P. blochii*, *T.
Table 3. Observed (obs), simulated (sim) and Z-index of the parameters C-score and Br in each habitat type in the three lakes during each hydrological phase. Bold fonts indicate values of Z with significant probabilities (P≤0.05) at the 5% error level, and an observed score higher than the simulated.

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Phase</th>
<th>Obs</th>
<th>Sim</th>
<th>Z-In</th>
<th>Obs</th>
<th>Sim</th>
<th>Z-In</th>
<th>Obs</th>
<th>Sim</th>
<th>Z-In</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aricagua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High Waters</td>
<td>LF C-score</td>
<td>0.071</td>
<td>0.083</td>
<td>-1.94</td>
<td>0.12</td>
<td>0.13</td>
<td>-0.78</td>
<td>0.134</td>
<td>0.158</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AV</td>
<td>0.089</td>
<td>0.087</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td>0.09</td>
<td>0.096</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SB</td>
<td>0.112</td>
<td>0.125</td>
<td>-1.15</td>
<td>0.089</td>
<td>0.087</td>
<td>0.46</td>
<td>0.09</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td>Falling Waters</td>
<td>LF C-score</td>
<td>0.126</td>
<td>0.144</td>
<td>-1.15</td>
<td>0.089</td>
<td>0.087</td>
<td>0.46</td>
<td>0.09</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AV</td>
<td>0.101</td>
<td>0.126</td>
<td>-2.53</td>
<td>0.089</td>
<td>0.087</td>
<td>0.46</td>
<td>0.09</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SB</td>
<td>0.112</td>
<td>0.105</td>
<td>1.62</td>
<td>0.12</td>
<td>0.14</td>
<td>-1.80</td>
<td>0.09</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td>Low Waters</td>
<td>LF C-score</td>
<td>0.112</td>
<td>0.105</td>
<td>1.62</td>
<td>0.12</td>
<td>0.14</td>
<td>-1.80</td>
<td>0.09</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AV</td>
<td>0.112</td>
<td>0.105</td>
<td>1.62</td>
<td>0.12</td>
<td>0.14</td>
<td>-1.80</td>
<td>0.09</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SB</td>
<td>0.112</td>
<td>0.105</td>
<td>1.62</td>
<td>0.12</td>
<td>0.14</td>
<td>-1.80</td>
<td>0.09</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td>Rising Waters</td>
<td>LF C-score</td>
<td>0.075</td>
<td>0.088</td>
<td>-3.38</td>
<td>0.078</td>
<td>0.085</td>
<td>-0.81</td>
<td>0.136</td>
<td>0.133</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AV</td>
<td>0.075</td>
<td>0.088</td>
<td>-3.38</td>
<td>0.078</td>
<td>0.085</td>
<td>-0.81</td>
<td>0.136</td>
<td>0.133</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SB</td>
<td>0.075</td>
<td>0.088</td>
<td>-3.38</td>
<td>0.078</td>
<td>0.085</td>
<td>-0.81</td>
<td>0.136</td>
<td>0.133</td>
</tr>
</tbody>
</table>

Table 4. Number of significant positive (P) and negative (N) species pairs per lake and per habitat type during each hydrological phase.

<table>
<thead>
<tr>
<th>Hydrological phase</th>
<th>Habitat</th>
<th>Aricagua</th>
<th>Paramuto</th>
<th>Mamo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>N</td>
<td>P</td>
</tr>
<tr>
<td>High waters</td>
<td>LF</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AV</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Falling waters</td>
<td>LF</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>AV</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Low waters</td>
<td>LF</td>
<td>8</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>AV</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>WD</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rising waters</td>
<td>LF</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>AV</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SB</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

auritus and *Geophagus* sp co-occurred together. The other aggregations were between two small engraulids, *A. perezi* and *Anchoviella lepidentostole*, and between the small characids *Moenkhausia colletti* and *M. jamesi*. During rising waters, *M. colletti* and *Hemigrammus micropterus* were segregated, and the latter was aggregated with its congeren *H. gracilis*. Other species of *Hemigrammus* were also involved in aggregations, including *H. vanderwinkleri* with *H. tridens* and *H. rhodostomus*. The medium-sized *Brycon falcatus* and the small cichlid *Dicrossus filamentosus* were aggregated as well. In high waters, only one segregated pair was detected: *M. colletti* and *H. gracilis*. The other pairs were aggregated, and included the small lebiasinid *Nannostomus unifasciatus* and *N. eques*, the former with the cichlid *Mesonauta egregius* and the latter with *Hypophthalmus marginatus* (Fig. 4).

In Paramuto, all the significant patterns between...
These consisted of two pairs of segregated species, represented by *A. perezi* with the small characid *Aphyocharax alburnus*, and the small catfish *Pimelodella* sp. with the characid *Moenkhausia aff. newtoni* (Fig. 4). During falling waters, the only significant segregation was detected in beaches with patches of aquatic vegetation, which involved *A. perezi* and the synbranchid *Synbranchus marmoratus* (Fig. 4). During this phase all pairs of significantly co-occurring species in sand beaches were aggregated and involved the small characids *Hemigrammus sp. arriba* with *H. micropterus*, *H. marginatus* with *Pristella maxillaris* and the annual cyprinodontiform *Poecilia reticulata* with *M. ternetzi*.

DISCUSSION

Co-occurrence patterns of the fish communities in the floodplains of the Orinoco River

The significant spatial variation in the composition of fish communities both among and within lakes indicates that the studied communities were structured at least partially by environmental conditions, supporting an environmental filtering process (Southwood 1977; Poff 1997; Lima & Melo 2009). The spatial separation of Mamo from the other lakes might have contributed to its differing fish population composition, although other factors such as its greater surface area could also have contributed to its greater species richness, while the acidity in Aricagua and Paramuto might explain their lower richness (Jackson et al. 2001).

The overall randomness in co-occurrence patterns of fish communities across hydrological phases in the littorals of the three lakes differed from what has been observed in other systems (Jackson et al. 1992; Arrington et al. 2005; Horner-Devine et al. 2007) where nonrandom patterns in fish communities have been observed. The randomness found in our lakes suggests that even during low waters deterministic processes such as interspecific competition and predation are not the strongest influences on the structure of fish communities in the Orinoco floodplains lakes, at least at the local scale. The last factor differs from the increasing role of biotic interactions found in low waters in tropical floodplains in other watercourses in Venezuelan llanos (Winemiller 1996). A random pattern has been described also in the floodplain of the Cinaruco River, an affluent of the Orinoco (Montaña et al. 2015).

Hoeinghaus et al. (2006) found that the fish communities in temperate systems tend to show a nonrandom pattern when examined at a regional scale, but that these shift to randomness when examined at a local scale. This has been attributed to the temporal variation in aquatic systems at smaller scales. Temporal variation has been signaled as the main source of disturbance in aquatic systems (Townsend 1989; Jackson et al. 2001), and this could be the key factor behind the general randomness in the co-occurrence patterns of the fish communities in our floodplain lakes at the local scale. The changes in the water levels across hydrological phases might create a disturbance through the constant reshuffling of the habitats, where deterministic processes would not have sufficient time to influence the assembly of these fish communities, as proposed by Townsend (1989) in the mobility control model. This model has been proposed as the better explanation of the community assembly patterns in other floodplain systems of the Orinoco (Arrington et al. 2005; Arrington & Winemiller 2006).

Fish assembly patterns in patchy habitats of tropical floodplains are influenced by the age of patches and their structural complexity (Arrington et al. 2005). The masses of aquatic vegetation in this study, although considered highly complex structurally, are also influenced by the seasonal changes (Valbo-Jørgensen 2000); indeed during low waters most aquatic vegetation dies (Machado-Allison 2005). Consequently, there may not be sufficient time for fish communities to become saturated. Similar processes might be acting on the communities in patches of woody debris. On the contrary, the sand beaches and those with bottoms of leaf litter tended to last more across seasons (Authors pers. obs.), which would explain why these habitats had a nonrandom pattern evidenced by more pairs of aggregated and segregated species with respect to the others.

Species pairs with significant patterns of co-occurrence

Despite the tendency to randomness in the communities’ co-occurrence patterns, several aggregated and segregated species pairs were observed in the three floodplain lakes, even though these did not endure through the whole hydrological cycle. Considering that the analyses were conducted separately for each habitat type, those segregated species cannot be explained by habitat segregation sensu Gotelli et al. (1997), suggesting that ecological segregation (Gotelli et al. 1997) might be one explanation for the existence of these pairs. For instance, the small-bodied insectivorous *M. eleotrioides* was the most frequently involved in segregations with several other small and medium sized insectivorous species such as *P. blochii*, *T. auritus* or *Geophagus* sp. (Taphorn 1992; González & Vispo 2004;
species pairs took place in beaches with bottoms of leaf litter, and were all aggregated (Table 4). During raising waters these involved the annual cyprinodontiform *Rivulus* sp with *M. colletti* and the later with the very small gobiform *Microphilypus ternetzi* (Fig. 4). During falling waters the only aggregation registered was between the medium sized catfishes *Hypophtalmus edentatus* and *Calophysus macropterus*.

In Mamo, during low waters the pairs with significant co-occurrences were observed in sand beaches (Table
Mérona & Rankin-de-Mérona 2004). This could be a strategy of \textit{M. eleotrioides} to avoid competition. For other characins a partition of foraging patches has been described as a mechanism that might relieve interspecific competition (Ceneviva-Bastos et al. 2010). The same mechanism could be intervening in the segregations among the small insectivorous characins \textit{M. colletti}, \textit{H. gracilis} and \textit{H. micropterurus}, that between \textit{M. aff. newtoni} with \textit{Pimelodella} sp., and among \textit{A. perezi} with the insectivores \textit{H. unimaculatus} and \textit{A. alburnus}. In contrast, the segregation between \textit{A. perezi} and \textit{S. marmoratus}, and that between \textit{P. blochii} and \textit{A. manamensis} might be a result of an intense predation, since \textit{P. blochii} and \textit{S. marmoratus} can feed on small fishes (Malabarba 2004). This could be a result of the segregation between \textit{A. perezi} and \textit{S. marmoratus} and that between \textit{P. blochii} and \textit{A. manamensis} could be better explained under the mobility control model at the local scale. These results expose the need to further explore the co-occurrence patterns in tropical floodplain lakes.

REFERENCES

Appendix 1. Supplementary information: List of species in the floodplain lakes of the Orinoco River

Characiformes

Acheilognathidae

Acheilognathus grandoculis

Acheilognathus microlepis

Amblydoradidae

Amblydorus affinis

Astyanax bimaculatus

Brycon falcatus

Bryconops giacopinni

Characidae

Astyanax bimaculatus

Brycon falcatus

Bryconops giacopinni

Hemigrammus analis

Hemigrammus bellottii

Hemigrammus elegans

Hemigrammus marginatus

Hemigrammus newboldi

Hemigrammus sp. 4

Hemigrammus sp. arriba

Hemigrammus tridens

Hemigrammus vonderwinkleri

Knodus

Microschemobrycon casiquiare

Moenkhausia colletti

Moenkhausia gr. chrysargirea

Moenkhausia gr. grandispinnis

Moenkhausia gr. lepida

Moenkhausia jamesi

Moenkhausia lepida

Moenkhausia megalops

Pristella maxillaris

Roeboides affinis

Curimatidae

Cyphochilus spilurus

Cymatopterus calopterus

Cynodontidae

Cynodon gibbus

Ctenoluciidae

Boulengerella cuvieri

Boulengerella maculata

Rhyacichthyidae

Rhabdoderus tetramerus

Salangidae

Trichopsis vittatus

Characidae

Astyanax bimaculatus

Brycon falcatus

Bryconops giacopinni

Hemigrammus analis

Hemigrammus bellottii

Hemigrammus elegans

Hemigrammus marginatus

Hemigrammus newboldi

Hemigrammus sp. 4

Hemigrammus sp. arriba

Hemigrammus tridens

Hemigrammus vonderwinkleri

Knodus

Microschemobrycon casiquiare

Moenkhausia colletti

Moenkhausia gr. chrysargirea

Moenkhausia gr. grandispinnis

Moenkhausia gr. lepida

Moenkhausia jamesi

Moenkhausia lepida

Moenkhausia megalops

Pristella maxillaris

Roeboides affinis

Curimatidae

Cyphochilus spilurus

Cymatopterus calopterus

Cynodontidae

Cynodon gibbus

Ctenoluciidae

Boulengerella cuvieri

Boulengerella maculata

Rhyacichthyidae

Rhabdoderus tetramerus

Salangidae

Trichopsis vittatus

Characidae

Astyanax bimaculatus

Brycon falcatus

Bryconops giacopinni

Hemigrammus analis

Hemigrammus bellottii

Hemigrammus elegans

Hemigrammus marginatus

Hemigrammus newboldi

Hemigrammus sp. 4

Hemigrammus sp. arriba

Hemigrammus tridens

Hemigrammus vonderwinkleri

Knodus

Microschemobrycon casiquiare

Moenkhausia colletti

Moenkhausia gr. chrysargirea

Moenkhausia gr. grandispinnis

Moenkhausia gr. lepida

Moenkhausia jamesi

Moenkhausia lepida

Moenkhausia megalops

Pristella maxillaris

Roeboides affinis

Curimatidae

Cyphochilus spilurus

Cymatopterus calopterus

Cynodontidae

Cynodon gibbus

Ctenoluciidae

Boulengerella cuvieri

Boulengerella maculata

Rhyacichthyidae

Rhabdoderus tetramerus

Salangidae

Trichopsis vittatus

Characidae

Astyanax bimaculatus

Brycon falcatus

Bryconops giacopinni

Hemigrammus analis

Hemigrammus bellottii

Hemigrammus elegans

Hemigrammus marginatus

Hemigrammus newboldi

Hemigrammus sp. 4

Hemigrammus sp. arriba

Hemigrammus tridens

Hemigrammus vonderwinkleri

Knodus

Microschemobrycon casiquiare

Moenkhausia colletti

Moenkhausia gr. chrysargirea

Moenkhausia gr. grandispinnis

Moenkhausia gr. lepida

Moenkhausia jamesi

Moenkhausia lepida

Moenkhausia megalops

Pristella maxillaris

Roeboides affinis

Curimatidae

Cyphochilus spilurus

Cymatopterus calopterus

Cynodontidae

Cynodon gibbus

Ctenoluciidae

Boulengerella cuvieri

Boulengerella maculata

Rhyacichthyidae

Rhabdoderus tetramerus

Salangidae

Trichopsis vittatus

Characidae

Astyanax bimaculatus

Brycon falcatus

Bryconops giacopinni

Hemigrammus analis

Hemigrammus bellottii

Hemigrammus elegans

Hemigrammus marginatus

Hemigrammus newboldi

Hemigrammus sp. 4

Hemigrammus sp. arriba

Hemigrammus tridens

Hemigrammus vonderwinkleri

Knodus

Microschemobrycon casiquiare

Moenkhausia colletti

Moenkhausia gr. chrysargirea

Moenkhausia gr. grandispinnis

Moenkhausia gr. lepida

Moenkhausia jamesi

Moenkhausia lepida

Moenkhausia megalops

Pristella maxillaris

Roeboides affinis

Curimatidae

Cyphochilus spilurus

Cymatopterus calopterus

Cynodontidae

Cynodon gibbus

Ctenoluciidae

Boulengerella cuvieri

Boulengerella maculata

Rhyacichthyidae

Rhabdoderus tetramerus

Salangidae

Trichopsis vittatus

Characidae

Astyanax bimaculatus

Brycon falcatus

Bryconops giacopinni

Hemigrammus analis

Hemigrammus bellottii

Hemigrammus elegans

Hemigrammus marginatus

Hemigrammus newboldi

Hemigrammus sp. 4

Hemigrammus sp. arriba

Hemigrammus tridens

Hemigrammus vonderwinkleri

Knodus

Microschemobrycon casiquiare

Moenkhausia colletti

Moenkhausia gr. chrysargirea

Moenkhausia gr. grandispinnis

Moenkhausia gr. lepida

Moenkhausia jamesi

Moenkhausia lepida

Moenkhausia megalops

Pristella maxillaris

Roeboides affinis

Curimatidae

Cyphochilus spilurus

Cymatopterus calopterus
The Journal of Threatened Taxa is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use of articles in any medium, reproduction, and distribution by providing adequate credit to the authors and the source of publication.

June 2017 | Vol. 9 | No. 6 | Pages: 10249–10368
Date of Publication: 26 June 2017 (Online & Print)
DOI: 10.11609/jott.2017.9.6.10249-10368
www.threatenedtaxa.org

ISSN 0974-7907 (Online); ISSN 0974-7893 (Print)

Articles

Co-occurrence patterns of fish communities in littorals of three floodplain lakes of the Orinoco River, Venezuela
-- Gabriela E. Echevarría & Nirson González, Pp. 10249–10260

Genetic diversity of the Green Turtle (Testudines: Cheloniidae: Chelonia mydas (Linnaeus, 1758)) population nesting at Kosgoda Rookery, Sri Lanka

Identity of Sphaerotheca pluvialis (Jerdon, 1853) and other available names among the burrowing frogs (Anura: Dicroglossidae) of South Asia
-- Neellesh Dahanukar, Shauri Sulakhe & Anand Padhye, Pp. 10269–10285

Sphaerotheca pashchima, a new species of burrowing frog (Anura: Dicroglossidae) from western India
-- Anand Padhye, Neellesh Dahanukar, Shauri Sulakhe, Nikhil Dandekar, Sunil Limaye & Kirti Jamdade, Pp. 10286–10296

Population status and species diversity of wetland birds in the Rapti and Narayani rivers and associated wetlands of Chitwan National Park, Nepal
-- Bed Bahadur Khadka, Paras Mani Acharya & Sunil Lal Rajbhandari, Pp. 10297–10306

Communications

Wildlife hunting by indigenous people in a Philippine protected area: a perspective from Mt. Apo National Park, Mindanao Island
-- Krizler Cejuela Tanalgo, Pp. 10307–10313

Pupal shape and size dimorphism in Aedes albopictus (Skuse, 1894) (Diptera: Culicidae)
-- Elvira Sánchez, Daniel Castillo & Jonathan Liria, Pp. 10314–10319

Short Communications

Occurrence and conservation of the Indian Leopard (Mammalia: Carnivora: Felidae: Panthera pardus) in Cox’s Bazar District of Bangladesh

A checklist of the avian fauna of Chittagong University campus, Bangladesh

Diversity and new records of intertidal hermit crabs of the genus Clibanarius (Crustacea: Decapoda: Diogenidae) from Gujarat coast off the northern Arabian Sea, with two new records for the mainland Indian coastline
-- Pradip Kachhiya, Jatin Raval, Paresh Poriya & Rahul Kundu, Pp. 10334–10339

Notes

Four species of Commelinaceae, as additions to Andhra Pradesh, India
-- S. Salamma, M. Chennakesavulu Naik, M. Anil Kumar, A. Sreenath & B. Ravi Prasad Rao, Pp. 10340–10344

Trematode infestation in coral colonies at Poshitra Reef, Gulf of Kachchh Marine National Park, Gujarat, India

First report of Mantibaria mantis (Dodd) (Hymenoptera: Scelionidae: Scelioninae) from India and additional descriptors for the species
-- Kamalanathan Veenakumari & Prashanth Mohanraj, Pp. 10347–10350

A new record of Tenodera fasciata (Olivier, 1792) (Insecta: Mantodea: Mantidae: Mantinae) for western India
-- Gopal Ambrushi Raut & Sunil Madhukar Gaikwad, Pp. 10351–10354

First records of butterflies Anthene emolus emolus (Godart, [1924]) (Lepidoptera: Lycaenidae: Polyommatinae) and Gandaca harina assamica Moore, [1906] (Lepidoptera: Pieridae: Coliadinae) from Kumaon, Uttarakhand, India
-- Sanjay Sondhi, Pp. 10355–10357

A new locality record of the rare Anomalous Nawab Polyura agrarius (Swinhoe, 1887) (Lepidoptera: Nymphalidae: Charaxinae) from central India
-- Deepika Mehra, Jagatjot Singh Flora & Vivek Sharma, Pp. 10358–10360

Taxonomic note about Willow Ermine Moth Yponomeuta rorrellus Hübner (Lepidoptera: Yponomeutidae) from Ladakh division of Jammu & Kashmir, India
-- Mudasir Ahmad Dar, Shahid Ali Akbar & Govindasamy Mahendiran, Pp. 10361–10364

First record of hagfish (Cyclostomata: Myxinidae) in Indian waters
-- B. Fernholm, A. Biju Kumar & Michael Norén, Pp. 10365–10368