SHORT COMMUNICATION

PERCH HEIGHT AND THE HUNTING SUCCESS OF THE INDIAN EAGLE

OWL BUBO BENGALENSIS (FRANKLIN) (Aves: Strigiformes: Strigidae) TARGETING ANURAN PREY

Eric Ramanujam

26 June 2016 | Vol. 8 | No. 6 | Pp. 8905–8908
10.11609/jott.2606.8.6.8905-8908
PERCH HEIGHT AND THE HUNTING SUCCESS OF THE INDIAN EAGLE OWL

Bubo bengalensis (Franklin) (Aves: Strigiformes: Strigidae)

TARGETING ANURAN PREY

Eric Ramanujam

Principal Investigator (Faunistics), Pitchandikulam Bioresource Centre / Pitchandikulam Forest Consultants, Auroville, Tamil Nadu 605101, India

ericramanujamowl@yahoo.com

Abstract: Investigation into the predation of a pair of Indian Eagle Owls on anurans disclosed the fact that the greatest success (52.17%) was when the owls pounced from a height of less than 2m and the lowest (12.5%) was from a height of 5–6 m. No success was recorded when the owls pounced from over a height of 6m or when they tried wading in water to catch their prey. Overall, 146 pounces were observed and the strike success was 28.7%.

Key words: Anurans, prey spectrum, perch height, pounce, Puducherry, strike success.

Anurans or batrachians form an important part of the prey spectrum of many owl species, for example, *Tyto alba* or the Barn Owl (Ruprecht 1979; Obuch & Benda 2009; Woolley 2010), *T. longimembris* or the Eastern Grass Owl (Kunsorn et al. 2015), *Bubo bubo* or the Eurasian Eagle Owl (Alivizatos 2005; Mikkola & Tornberg 2014), *B. virginianus* or the Great Horned Owl (Kittredge et al. 2007), *Strix aluco* or the Tawny Owl (Betts 1928; Zawadzaka & Zawadzaka 2007; Wiacek et al. 2009), *Athene noctua* or the Little Owl (Marples 1942), *A. brama* or the Spotted Owlet (Kumar 1985), *A. cunicularia* or the Burrowing Owl (Errington & Bennett 1935), *Asio madagascariensis* or the Madagascar Long-eared Owl (Goodman et al. 1993) and *Asio flammeus* or the Short-eared Owl (Clark 1975).

Anurans form an important seasonal diet of the Indian Eagle Owl *Bubo bengalensis* around Puducherry (formerly Pondicherry) in southern India (Ramanujam 2006). Ramanujam (2006) showed that numerically, anurans were the second highest vertebrate prey after rodents which constituted the primary food of *Bubo bengalensis*—127 anurans were consumed by four pairs of breeding owls studied from February 2001 to December 2003 (for the record 1,860 rodents were consumed). While rodents were consumed at all times of the year, anurans were predated upon only during the months of October to January when the reservoirs contained water. In stark contrast, anurans made up a very small proportion of prey in Pune and Raigad districts of Maharashtra—just six individuals among 2,016 vertebrates (Pande et al. 2011). Interestingly, anurans were completely absent in the diet of *Bubo bengalensis* in Alibag and Chipulin (Pande & Dahanukar 2011).

Owls being predominantly nocturnal, it is almost impossible to track their hunting activities, and to the best of my knowledge, only a few instances of observations have been documented in the wild earlier, viz.: *Bubo virginianus* or the Great Horned Owl (Toland 1986), *B. scandiaca* or the Snowy Owl (Boxall & Lein 1982), *Athene brama* or the Spotted Owlet (Kumar 1985), *A. noctua* or the Little Owl (Tome et al. 2011), *Asio flammeus* or the Short-eared Owl (Clark 1975; Toland 1986) and *Megascops asio* or the Eastern Screech Owl (Abbuzziere & Ritchison 2013).
Furthermore, two of the documents (Tome et al. 2011; Abbuzzese & Ritchison 2013) do not attempt to present percentage of successful strikes in relation to the number of pounces. This is in stark contrast to diurnal raptors where the hunting behaviour of many species have been studied in detail - for example, Northern Sparrowhawk Accipiter nisus, White-tailed Fish Eagle Haliaeetus albicilla, Merlin Falco columbarius, Peregrine Falcon Falco peregrinus (Rudebeck 1950), Osprey Pandion haliaetus, Bald Eagle Haliaeetus leucocephalus, Northern Harrier Circus hudsonius, Northern Goshawk Accipiter gentilis, Sharp-shinned Hawk Accipiter striatus, Cooper’s Hawk Accipiter cooperi, Broad-winged Hawk Buteo platypterus, Swainson’s Hawk Buteo swainsoni, Red-shouldered Hawk Buteo lineatus, Red-tailed Hawk Buteo jamaicensis, Rough-legged Buzzard Buteo lagopus, Merlin Falco columbarius, American Kestrel Falco sparverius, Peregrine Falcon Falco peregrinus and Prairie Falcon Falco mexicanus (see Toland 1986).

This report attempts to co-relate the hunting success of Bubo bengalensis on anurans in relation to perch height which could be one more cog in the wheel towards unraveling the behavioural ecology of this little studied taxon. Perch height in relation to success rates has been studied in the Little Owl Athene noctua but the results seem inconclusive (Marples 1942) but some interesting data is available on diurnal raptors (Alivizatos et al. 2005).

METHODS

Aranya (11°58’N & 79°46’E), a centre for rain fed reforestation programmes near Ousteri (or Osudu) Lake about 15km north-west of Puducherry City, is flanked by extensive ravines—the habitat of Bubo bengalensis. A pair of these owls occupied a defined territory (Ramanujam 2003) and were habituated to the author’s presence from May 2001 to February 2003 (a period of 22 months) which made it possible to observe their hunting of anurans sitting on a bund flanking a water catchment. This practice was adopted during the months of November 2001 to January 2002 when the owls allowed us to begin watching from a close range, and again from August 2002 to January 2003. The percentage of hunting success was determined thus: number of successful strikes x 100 / number of pounces. The percentage of hunting success was co-related to the height of the perch from which they pounced to give a fair idea of the strike success, viz., which was the most as well as the least successful.

RESULTS

A total of 146 pounces were recorded out of which 42 (28.7%) were successful (Table 1). The highest hunting success (52.1%) was when the owls pounced from a height of less than 2m, where of the 46 hunts observed 24 were successful. The hunting success diminished remarkably with a logarithmic trend (Fig. 1) as the owls pounced from higher vantage points and no success was met with when owls pounced from the lip of the reservoir which was over 6m in height. On 20 occasions the owls were observed to wade in water and were not successful in capturing any prey.

DISCUSSION

The owls we observed consumed only two species of anurans: the Paddyfield Frog or Cricket Frog Fejervarya sp. (image 1a) and Marbled Balloon Frog Upereodon systoma (Image 1b). At the onset of the south-east monsoons we had observed the Common Indian Toad Duttaphrynus melanostictus and Dwarf Toad Duttaphrynus scaber breeding in this reservoir at the end of the month of July.
Table 2. Outcome of hunts for five species of owls and 18 species of diurnal raptors

<table>
<thead>
<tr>
<th>Species</th>
<th>n hunts observed</th>
<th>% successful</th>
<th>Citation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Great Horned Owl Bubo virginianus</td>
<td>24</td>
<td>66.7</td>
<td>Tolland 1986</td>
</tr>
<tr>
<td>Snowy Owl Bubo (Nyctea scandiaca)</td>
<td>51</td>
<td>43.1</td>
<td>Boxall & Lein 1982</td>
</tr>
<tr>
<td>Indian Eagle Owl Bubo bengalensis</td>
<td>126</td>
<td>28.7</td>
<td>Present Study*</td>
</tr>
<tr>
<td>Spotted Owlet Athene brama</td>
<td>141</td>
<td>34.7</td>
<td>Kumar 1985</td>
</tr>
<tr>
<td>Short-eared Owl Asio flammeus</td>
<td>628</td>
<td>20.7</td>
<td>Clark 1975</td>
</tr>
<tr>
<td>Short-eared Owl Asio flammeus</td>
<td>60</td>
<td>43.3</td>
<td>Tolland 1986</td>
</tr>
<tr>
<td>Osprey Pandion haliaetus</td>
<td>106</td>
<td>67.0</td>
<td>Tolland 1986</td>
</tr>
<tr>
<td>White-tailed Sea Eagle Haliaetus albicilla</td>
<td>60</td>
<td>5.0</td>
<td>Rudebecker 1950</td>
</tr>
<tr>
<td>Bald Eagle Haliaetus leucocephalus</td>
<td>173</td>
<td>30.0</td>
<td>Tolland 1986</td>
</tr>
<tr>
<td>Northern Harrier Circus hudsonicus</td>
<td>111</td>
<td>33.8</td>
<td>Tolland 1986</td>
</tr>
<tr>
<td>Northern Sparrow Hawk Accipiter nisus</td>
<td>213</td>
<td>10.8</td>
<td>Rudebecker 1950</td>
</tr>
<tr>
<td>Northern Goshawk Accipiter gentilis</td>
<td>9</td>
<td>33.3</td>
<td>Tolland 1986</td>
</tr>
<tr>
<td>Sharp-shinned Hawk Accipiter striatus</td>
<td>34</td>
<td>26.5</td>
<td>Tolland 1986</td>
</tr>
<tr>
<td>Cooper's Hawk Accipiter cooper</td>
<td>70</td>
<td>20.0</td>
<td>Tolland 1989</td>
</tr>
<tr>
<td>Cooper's Hawk Accipiter cooper</td>
<td>144</td>
<td>20.0</td>
<td>Roth & Lima 2003</td>
</tr>
<tr>
<td>Broad-winged Hawk Buteo platypterus</td>
<td>71</td>
<td>65.2</td>
<td>Tolland 1986</td>
</tr>
<tr>
<td>Swainson's Hawk Buteo scandiacus</td>
<td>22</td>
<td>59.0</td>
<td>Tolland 1986</td>
</tr>
<tr>
<td>Red-shouldered Hawk Buteo lineatus</td>
<td>80</td>
<td>58.8</td>
<td>Tolland 1986</td>
</tr>
<tr>
<td>Red-tailed Hawk Buteo jamaicensis</td>
<td>405</td>
<td>60.6</td>
<td>Tolland 1986</td>
</tr>
<tr>
<td>Rough-legged Hawk Buteo lagopus</td>
<td>189</td>
<td>55.6</td>
<td>Tolland 1986</td>
</tr>
<tr>
<td>Merlin Falco columbarius</td>
<td>8</td>
<td>23.0</td>
<td>Tolland 1986</td>
</tr>
<tr>
<td>Merlin Falco columbarius</td>
<td>80</td>
<td>28.0</td>
<td>Sudhir et al. 1991</td>
</tr>
<tr>
<td>American Kestral Falco sparverius</td>
<td>1,512</td>
<td>69.3</td>
<td>Tolland 1986</td>
</tr>
<tr>
<td>Peregrine Falco Falco peregrinus</td>
<td>200</td>
<td>7.8</td>
<td>Rudebecker 1950</td>
</tr>
<tr>
<td>Peregrine Falco Falco peregrinus</td>
<td>14</td>
<td>21.4</td>
<td>Tolland 1986</td>
</tr>
</tbody>
</table>

Note: *Concerns only anuran prey

In both 2001 and 2002, but the owls did not attack them perhaps because their parotid glands excrete a mild poison. Interestingly, the Eurasian Eagle Owl *Bubo bubo* is known to prey on toads, albeit in very small quantities (Tumurbat et al. 2009; Obuch 2014). ‘Foot hunting’ is an interesting behaviour and has been reported in *Tyto alba* (see Hadach 1991) and *Bubo virginianus* (see McMillan 1998).

Owls have been eulogized as excellent pest control agents (for example, Pande & Dahanukar 2011), but their role is even more important in the control of invasive exotics - including some anurans. The Puerto Rican Frog *Eleutherodryas coqui* has invaded Hawaii and has negatively impacted the state’s multimillion dollar floriculture, nursery and tourist industries; little is known about the ecological consequences of its invasion (Beard & Pitt 2005). What is known is that owls and raptors prey on these alien invasive frogs and it is estimated that up to 40% of the nestling diet of the Puerto Rican Scrub Owl *Megascops nudipes* to be coquis (Snyder et al. 1987). It has also been suggested that coquis could serve as a food source to some endemic bird species like the Hawaiian Short-eared Owl *Asio flammeus sandwichensis* (Beard & Pitt 2005). Another Anuran, the African Clawed Frog *Xenopus laevis* is creating a serious problem in Chile and the Burrowing Owl *Athene cunicularia*.

Image 1. Anurans hunted by *Bubo bengalensis* at Aranya. *(a) Fejervarya sp. and (b) Uperodon systoma.*
is having some effect of controlling numbers by predation in addition to two other bird species (Lobos & Jaksic 2005).

Kumar (1985) remarks “Hunting success of 35% for the Spotted Owlets represent higher success than other species’ success (Table 30). Probably, the hunting success of nocturnal predatory species might be more comparatively to diurnal raptors. Because the prey species such as rodents or insects encounter with many potential diurnal predators, hence they will be more alert at predator attacks and thereby making low hunting success. During nights, the prey species have less number of potential predators and have more access to the predators making higher hunting success”. This allusion could be because of the lack of literature in press at that time - “Table 30” in Kumar (1985) gives the success rates of just four species of diurnal raptors from one source (Rudebeck 1950) which may have biased the allusion. Since then more data has emerged and strike from one source (Rudebeck 1950) which may have biased the allusion.

Out of many raptors are known today. Table 2 shows the hunting success rates of five species of owls in comparison to 18 species of diurnal raptors and the results are both comparable and variable between and among species. For example, among the owls Bubo virginianus has the highest strike rate (66.7%) but this is exceeded by Pandion haliaetus and Falco sparverius, and comparable to Buteo platypterus, B. swainsoni, B. lineatus, B. Jamaicensis and B. lagopus – all over 50%. No other owl approaches that figure except Bubo scandiaca (43.1%) which during the breeding season is a diurnal hunter. Furthermore, if one compares the success rates of Asio flammeus in different areas and by different individuals it shows a significant variation (20.7% to 43.3% - more than twice). Even more startling is the intra-specific variation between Falco peregrinus and F. columbarius, and in both cases there seems to be a major variation to Rudebeck’s data - in the first species 69.3% to 7.3% and in the second 25% and 28% to 4.5%. More empirical data in regard to prey spectrums / choices, prey abundance, hunting season, habitat, etc. is the need of the hour and more analysis is necessary before a holistic conclusion can be drawn in this regard.

References

Articles

Low genetic diversity in *Clarias macrocephalus* Günther, 1864 (Siluriformes: Clariidae) populations in the Philippines and its implications for conservation and management
-- Marc Timothy C. Tan, Joycelyn C. Jumawan & Jonas P. Quilang, Pp. 8849–8859

On the reproductive ecology of *Suaeda maritima*, *S. monoica* and *S. nudiflora* (Chenopodiaceae)
-- A.J. Solomon Raju & Rajendra Kumar, Pp. 8860–8876

Communications

The Nilgiri Tahr (Mammalia: Cetartiodactyla: Bovidae: *Nilgiritragus hylocrius* Ogilby, 1838) in the Agastymalai range, Western Ghats, India: population status and threats
-- Ponniah Hopeland, Jean-Philippe Puyravaud & Priya Davidar, Pp. 8877–8882

All that glitters is not gold: A projected distribution of the endemic Indian Golden Gecko *Calodactylodes aureus* (Reptilia: Squamata: Gekkonidae) indicates a major range shrinkage due to future climate change
-- Aditya Srinivasulu & Chelmala Srinivasulu, Pp. 8883–8892

Description of a new species of *Umairia* Hayat (Hymenoptera: Aphelinidae) with additional distribution records of aphelinids from India
-- Sagadai Manickavasagam, Chakaravarty Menakadevi & Mani Ayyamperumal, Pp. 8893–8897

Egg parasitoids from the subfamily Scelioninae (Hymenoptera: Platygasteridae) in irrigated rice ecosystems across varied elevational ranges in southern India
-- M. Shweta & K. Rajmohana, Pp. 8898–8904

Short Communications

Perch height and the hunting success of the Indian Eagle Owl *Bubo bengalensis* (Franklin) (Aves: Strigiformes: Strigidae) targeting anuran prey
-- Eric Ramanujam, Pp. 8905–8908

A checklist of avifauna from Malgaon-Bagayat and Malvan towns of Sindhudurg District, Maharashtra, India
-- Mayura Khot, Pp. 8909–8918

Rediscovery of *Penicillium paradoxum* (Ascomycete: Aspergillaceae) from Maharashtra, India

Notes

A first record of the Lined Wrasse *Anampses lineatus* Randall, 1972 (Perciformes: Labridae) in the Gulf of Mannar, Tamil Nadu, India
-- S. Prakash & T.T. Ajith Kumar, Pp. 8923–8926

A report of False Tibetan Cupid *Tongeia pseudozuthus* Huang, 2001 (Lepidoptera: Lycaenidae) from the Upper Dibang Valley, Arunachal Pradesh - An addition to the Indian butterfly fauna
-- Seena N. Karimbhumkara, Rajkamal Goswami & Purnendu Roy, Pp. 8927–8929

Recent sightings of Kaiser-I-Hind *Teinopalpus imperialis* Hope, 1843 (Lepidoptera: Teinopalpini) from Manipur, India
-- Baleshwor Soibam, Pp. 8930–8933

Are exotics *Amynthas alexandri* (Beddard, 1900) and *Metaphire pectuarea* (Rosa, 1890) (Clitellata: Oligochaeta: Megascolecidae) a threat to native earthworms in Kerala, India?

Notes on three new records of foliicolous lichens from Karnataka Western Ghats, India
-- S. Shravan Kumar & Y.L. Krishnamurthy, Pp. 8950–8952