SHORT COMMUNICATION

NEW RECORDS OF POLYPORES (BASIDIOMYCOTA: APHYLLOPHORALES) FROM THE SOUTHERN WESTERN GHATS WITH AN IDENTIFICATION KEY FOR POLYPORES IN PEECHI-VAZHANI WILDLIFE SANCTUARY, KERALA, INDIA

A. Muhammed Iqbal, Kattany Vidyasagar & P. Narayan Ganesh

26 August 2016 | Vol. 8 | No. 9 | Pp. 9198–9207
10.11609/jott.2553.8.9.9198-9207
New records of polypores (Basidiomycota: Aphyllophorales) from the southern Western Ghats with an identification key for polypores in Peechi-Vazhani Wildlife Sanctuary, Kerala, India

A. Muhammed Iqbal¹, Kattany Vidyasagarana & P. Narayan Ganesh³

¹² College of Forestry, Kerala Agricultural University, P.O. Vellanikkara, Thrissur, Kerala 680656, India
³ Sree Krishna College, Calicut University, Choonal Mattom Rd, Koonammoochi, Alur, Guruvayur, Thrissur, Kerala 680602, India

¹ iqbalptpm@gmail.com (corresponding author), ² vidyakattany@yahoo.com, ³ pganeshskc@rediffmail.com

Abstract: The present study reports new distribution records of two species of polypores; Pycnoporus cinnabarinus (Jacq.) P. Karst. and Datronia mollis (Sommerf.) Donk under family polyporaceae from the moist deciduous forests of southern Western Ghats, Peechi-Vazhani Wildlife Sanctuary, Kerala. This paper also provides detailed macro-morphology and micro-morphology of newly recorded fungi and key for identification of polypores reported from the study area. An opportunistic sampling was carried out along with the plot based sampling in order to maximize the documentation of polypore distribution. A total of 36 polypore species in 21 genera belonging to six families were recorded throughout the entire study period of 2012–2014. Out of these, 26 species were annuals and 10 species perennials. Thirty-four polypores were identified as white rotting and two species were brown rotting.

Keywords: Brown rotting, moist deciduous forests, Peechi-Vazhani Wildlife Sanctuary, polypores, Polyporaceae, white rotting.

The tropical regions are endowed with diverse types of forest ecosystems that support a unique assemblage of biotic communities including wood decaying polypores. Polypores are distinguished from other groups of fungi by their macroscopic basidiocarps with pores (Leelavathy & Ganesh 2000). They decompose coarse woody debris like fallen trunks, branches, twigs and stumps and play a pioneering role in ecosystem system functioning such as nutrient cycling and transport. The ability to break down the lignocelluloses that help in wood decomposition appears to be mainly restricted to basidiomycete fungi. Based on this unique functional role, they have been divided into white rot fungi and brown rot fungi (Peace 1962).

European scientists had initiated the taxonomic studies of Indian polypores by the middle of the 19th century. Klotzsch (1832) described four polypore fungi and seems to be the earliest report on Indian polypores. Bose (1919-28) was the first Indian mycologist who collected and described 143 species of polypores from the Bengal region on a comprehensive scale. Later on Sundaramani & Madurajan (1925) reported several members of Polyporaceae from Madras. Butler &
Bisby (1931) made a compilation of the Indian fungi which includes 293 polyporoid species in 16 genera. Polypores and its forest pathological aspects were widely studied by Bagchee & Bakshi (1950, 1951) and Bagchee (1953) extensively studied the diseases and decays on forest trees. Bakshi and co-workers reported new polypores on forest trees of Himalaya and southern India (Bakshi 1956, 1965). Moreover, Bakshi (1971) in his monograph “Indian Polyporaceae (on trees and timber)” gave an account of 355 species of polypores belonging to 15 genera. Rattan (1977) described the resupinate Aphyllophorales of the North Western Himalayas. However, Natrajan & Kolandavelu (1985) studied resupinate Aphyllophorales from southern India and reported 82 species belonging to 48 genera of these fungi from Tamil Nadu. Sharma (1995) published the list of polypores under the family Hymenochaetaceae from India. Roy & De (1996) published a manual on the Indian Polyporaceae. Verma et al. (2008) described forest fungi of central India including polypores. Tiwari et al. (2013) reported 191 wood decaying fungi on 86 timber species.

Leelavathy & Ganesh (2000) conducted an extensive study on the polypores of Kerala and reported 73 species belonging to 26 genera. Florence & Yesodharan (2000) conducted a survey on macro fungi occurring in the Peechi-Vazhani Wildlife Sanctuary and reported 57 species belonging to 37 genera; out of this 35 species of polypores belonging to 24 genera were recorded. More recently Mohanan (2011) identified and described a total of 89 species of polypores belonging to 32 genera from different forest ecosystems of Kerala. The proportion of studies of species richness in tropical forests dealing with fungi in general (studies of polypores are in turn only a fraction of this proportion) is seldom reported. A checklist on polypores is very important in order to know their distribution in a particular forest type of Western Ghats. The present study is an attempt to study the polypores among the macro fungi and to prepare a checklist along with key for identification.

MATERIALS AND METHODS

Study Area

The Peechi-Vazhani Wildlife Sanctuary (P-VWS) lies within the geographical extremes of latitudes 10°26'N–10°40'N & 76°15'E–76°28'E, covering an area of 125km² in Thrissur District, Kerala State (Fig. 1). Annual average precipitation in the sanctuary is 3000mm and is situated at 45–900 m. As per Champion & Seth (1986), the forest type of the sanctuary (nearly 80%) is moist deciduous forest, 15% is evergreen and semi-evergreen and the remaining five per cent is under teak and soft wood plantations.

Survey, Collection and Identification of fungi

The survey was conducted from January 2012 to October 2014 in P-VWS, Kerala for collection of polypores. Three permanent fixed size sample plots of 100×100 m were established in three different locations,
New records of polypores from Western Ghats
Iqbal et al.

viz., Vellani, Mannamangalam and Olakkara sections of the sanctuary as per the methodology of the earlier fungal studies (Yamashita et al. 2010; Mohanan 2011). Also subplots of 10x10 m were fixed in each permanent plot for detailed analysis. The sample plots were visited during pre-monsoon, monsoon and post monsoon periods for the documentation of polypores including collection of sporocarps, labelling with specimen number, rot character identification, taking photographs and recording macromorphological characters and details of substratum in the illustrated data sheet. A total area of 30,000m² was surveyed in each of the three climatic seasons. Additional collection of polypores was also made from “off plots” in the study area. Thus, a combination of opportunistic and plot-based survey was carried out to maximize the documentation of polypore diversity and distribution. The polypore specimens collected from the study area were kept in paper bags and brought to the lab. The specimens were properly air dried or oven dried and stored in polythene zip-cover under less humid conditions. The specimens were identified based on their macro and micro morphological features. The identification key provided by Bakshi (1971) and Leelavathy & Ganesh (2000) were used for the confirmation of polypore species. The micro-morphological characteristics of the polypores were drawn with the help of camera lucida. Some of the specimens were compared with those in the Herbaria at Kerala Forest Research Institute, Peechi. All the specimens collected during the study period were catalogued and kept under less humid conditions in the Department of Forest Management and Utilization, College of Forestry at Kerala Agricultural University. After proper identification, the current names of the identified polypores and their taxonomic details were accessed from the website: www.mycobank.org (accessed on 15th January 2015).

Results and Discussion
A total of 36 polypore species in 21 genera belonging to six families were recorded and their distribution were analysed family-wise, rot-wise and habit-wise (Table 1, Images 1–36). Among these species, Pycnoporus cinnabarinus (Jacq.) P. Karst. and Datronia mollis(Sommerf.) Donk were found to be new records from the Southern Western Ghats and these species have been described based on macro-morphology and micro-morphology.

1. Pycnoporus cinnabarinus (Jacq.) P. Karst.
Revue Mycologique Toulouse 3(9): 18 (1881)
New records of polypores from Western Ghats

Iqbal et al.

KOH; pores arising in uniform or wavy layer, up to 5mm long, concolourous with the context.

Hyphal system trimitic; generative hyphae thin-walled, seldom branched, with clamps, 2–3(4) µm thick; binding hyphae yellowish, slightly thick-walled, branched, rarely septate, 4–6 µm thick; skeletal hyphae yellowish, long, reddish encrustations with broad lumen, unbranched, 6–8 µm thick; detached proterospores (chlamydospores) hyaline, thick-walled, without ornamentation, almost uniform in size and shape; 10x8 µm; basidia and spores not observed (Fig. 2).

Specimen examined: MIA 3/22-4-2012, on decaying logs of Dillenia pentagyna (Dilleniaceae).

Decay: White rot with scattered reddish patches in wood.

2. Datronia mollis (Sommerf.) Donk

Persoonia 4(3): 338 (1966)

Daedalea mollis Sommerf., Supplementum florae lapponiae: 271 (1826)

Trametes mollis (Sommerf.) Fr., Elenchus Fungorum 1: 71 (1828)

Polyporus mollis (Sommerf.) P. Karst., Bidrag till Kännedom av Finlands Natur- och Folk 25: 280 (1876)

Antrodia mollis (Sommerf.) P. Karst., Meddelanden af Societas pro Fauna et Flora Fennica 5: 40 (1879)

Daedaleopsis mollis (Sommerf.) P. Karst., Finlands Basidsvampar (11): 135 (1899)

Cerrena mollis(Sommerf.) Zmitr., Mycena 1(1): 91 (2001)

Trametes serpens Fr., Summa vegetabilium Scandinaviae 2: 324 (1849)

Polyporus sommerfeltii P. Karst. (1878)

Polyporus sommerfeltii P. Karst., Meddelanden af Societas pro Fauna et Flora Fennica 5: 53 (1879)

Daedalea lassberghii Allesch., Berichte des Botanischen Vereins Landshut 11: 23 (1889)

Fruit body annual, resupinate, slightly reflexed, leathery, 5–40 x 2–6 x 0.02–0.05 cm. Pileus surface creamy white to salmon to reddish yellow, slightly zonate, glabrous towards margin, margin smooth, thick and rounded. Pore surface uneven, yellowish-red, sometimes slightly brownish, shiny; pores visible to naked eye, round to angular, sometimes daedaloid towards margin, sometimes daedaloid in centre portions, often confluent, pores absent towards margin, 3–4 per mm, disseminations thinner towards pore mouth; context uniform, yellowish-red, 0.2–0.4 cm thick pores arising in uneven sequence.

Hyphal system trimitic; generative hyphae thin-walled, branched, with clamps and seldom branched, 2–3 µm thick; binding hyphae yellowish, thick walled, closely branched, with a narrow lumen, 2.5–4 µm thick; skeletal hyphae yellowish, long, unbranched, thick-walled, with a narrow lumen, 4–6 µm wide. Basidium broadly clavate, 4-spored, 20x6 µm; sterigmata up to 2µm long, encrusted cystidia present, hyaline, slightly thick walled, encrustations from half length upwards, 15–20 x 8–10 µm. Basidiospores oval, hyaline, 6.5–7.5 x 3.5–4.5 µm (Fig. 3).

Specimen examined: MIA 47/22-4-2012, on decaying logs of Xylia xylocarpa (Mimosoideae).

Decay: White fibrous rot.

These species were confirmed by comparing the characters described for the specimens collected by Bakshi (1971) and Ryvarden & Gilbertson (1993). The present collection of Pycnoporus cinnabarinus agrees with that of Bakshi (1971), but the hyphae are broader. Earlier this species was reported on wood logs of Anogeissus latifolia from central India (Tiwari et al. 2013). Bakshi (1971) reported this species as Polyporus cinnabarinus Jacq. ex Fr. The presence of detached proterospores (chlamydospores) is first being reported during the present study. Bakshi (1971) reported Datronia mollis as Trametes serpens Fr. for his collections from Uttar Pradesh and West Bengal. Tiwari et al. (2013) described this species on wood logs of Pterocarpus marsupium from Chhattisgarh. The present collection of Datronia mollis showed similarity to morphological features of North American collections but for the light coloured pore surface (Ryvarden & Gilbertson 1993). An identification key has also been provided for the polypores recorded from the study area (Appendix...
Among the polypores recorded, 26 species were annuals and perennials were represented by 10 species only. The rot characteristics of the polypores were also identified; the white rot polypores have a significant dominance over brown fungi. Within the species list, 34 polypores were identified as white rotting and only two species were brown rotting. The species composition of polypores in the sanctuary revealed that the species belonging to the family Polyporaceae was more common than other five families. Out of the 36 species confirmed,
Images 1–24. Polypores of Peechi-Vazhani Wildlife Sanctuary. Names of species are given in Table 1 as the serial numbers 1–24.
58.33% belonged to Polyporaceae and 25% belonged to Hymenochaetaceae, while Ganodermataceae and Fomitopsidaceae consisted of 5.56% each and Meripilaceae and Schizoporaceae consisted of 2.78% each. The species composition of the present study confirms the findings of previous studies conducted on different forest stands of the Western Ghats especially Kerala. Leelavathy & Ganesh (2000) mentioned that 53 species of polypores belonging to 26 genera from both the forest and non-forest areas of Kerala and in that study Polyporaceae was the major family and 90% of the species were white rotters. Noteworthy that, Florence & Yesodharan (2000) reported 31 species of polypores from the P-VWS and out of this, Polyporaceae was the major family and more than 90% of the species were identified as white rot fungi. More recently, Mohanan (2011) described the macrofungal flora of Kerala which comprised 89 polypores species with Polyporaceae as the major family and 90% were identified as white rotters. It was considered that the brown rot fungi are more adapted to coniferous habitats than white rot fungi and more efficient than white rot in acquiring food resources from wood (Gilbertson 1980). An evolutionary

flash back was suggested by Worrall et al (1997) that whiterot fungi were highly specialized for the wood environment, brown rot fungi apparently arose from them in many groups, most especially in the polypores.

CONCLUSION

The surveys conducted on polypores and new reports from the southern Western Ghats region revealed the necessity of detailed studies in order to explore more polypores that will help to make an updated checklist of macrofungi of the state. Moreover, proper in situ and ex situ conservation measures are required for polypores as they play a vital role in the decomposition and nutrient cycling of forest ecosystems.

REFERENCES

Bakshi, B.K. (1956). Occurrence of Polyporus squamosus (Hund.) Fr. in
New records of polypores from Western Ghats

Iqbal et al.

Bakshi, B.K. (1965). Four fomes as unrecorded tree parasites in India. Forest Bulletin No.244, Forest Research Institute, Dehradun, 4pp.

Appendix 1. Key to the polypore species collected from Peechi-Vazhani Wildlife Sanctuary, Kerala, India

Key to families of Polypores (partly adapted from Leelavathy & Ganesh 2000)

1. Spores with double wall, exosporium hyaline, thin, membranous covering an ornamented, thick brownish endosporium; spores round, truncate ... Ganodermataceae
1'. Spores with simple wall, smooth or ornamented, hyaline or brownish ... 2
2. Hyphal system monomitic; cystidia present ... 3
2'. Hyphal system dimitic or trimitic, cystidia present or absent .. 4
3. Fruit body brownish; xanthochoric; generative hyphae with simple septa, rarely clamped; hyaline if dimictic, dark brown if monomitic; setae brownish, present or absent ... Hymenochaetaceae
3'. Fruit body white, cream, red, brown or black; generative hyphae simple-septate or with clamps, usually not xanthochoric, if xanthochoric generative hyphae clamped; hyaline if monomitic; setae absent ... 5
4. Individual pileus effused-reflexed, zonation not prominent, context stratifed, pores split Schizophoraceae
4'. Individual pileus flabelliform with brown concentric zones, context uniform, hymenophore poroid Meripilaceae
5. Context light shaded, corky, dimictic, normally ungulate with a crust, never stipitate Fomitopsidaceae
5'. Context thin, whitish or coloured, coriaceous, dimictic to trimitic, stipitate or sessile polyporaceae

Fomitopsidaceae Julich

1. Fruit body with round pores, context with a distinct crust at least at the base, woody hard ... Fomitopsis P. Karst. ([F. feei]
1'. Fruit body lamellate to daedaloid, if poroid with large pores, >2mm in diam Daedalea Pers. (D. flavida)

Ganodermataceae Karst.

Rev. Mycol. 3: 17, 1881.

1. Sporophore stipitate; upper surface laccate, reddish brown to yellowish G. lucidum
1'. Sporophore sessile; upper surface not laccate and shiny, brownish, powdery G. applanatum

Hymenochaetaceae Donk

1. Hyphal system monomitic .. Inonotus Karst. ([I. luteombrinus]
1'. Hyphal system dimitic .. 2
New records of polypores from Western Ghats
Iqbal et al.

1. Pileal surface radially wrinkled ... F. gilva
2’. Pileal surface concentrically sulcate ... F. senex

Fuscospora Murr. N. Am. Fl. 9: 3, 1907

1. Tramal setae or hymenial setae present .. 2
1’. Tramal setae and hymenial setae absent .. 3
2. Fruit body resupinate; pores 9–10 per mm.. P. ferrugineo-velutinus
2’. Fruit body imbricate; pores 6–8 per mm .. P. dependens
3. Fruit body resupinate... 4
3’. Fruit body imbricate ... 4
4. Pores 6–8 per mm; dissepiments 70–90 µm thick .. P. f. astuusas
4’. Pores 7–10 per mm; dissepiments 100–120 µm thick P. gilvoide

One species collected during the study. Rigidoporus lineatus (Pers.) Ryvarden

Polyporaceae Corda Icon. Fung. 3: 49, 1839

1. Fruit body stipitate.. 2
1’. Fruit body sessile, effused-reflexed .. 6
2. Spores elliptical; corollid elements present in hymenium Microporus P. Beauv.
2’. Spores globose to sub-globose, corollid elements nil Microporellus Murr. (M. obatus)
3. Hyphal system di, trimitic, darker in KOH ... 8
3’. Hyphal system di, trimitic, darker in KOH ... Polyporus. Str. Fr.
4. Pores hexagonal... 10
4’. Pores round, rarely daedaloid .. 5
5. Context coloured, poriod .. 6
5’. Context white or cream, poriod, sometimes daedaloid 9
6. Fruit body effused-reflexed, never imbricate ... Melanoporia Murr. (M. nigra)
6’. Fruit body imbricate, attached with a broad base... 7
7. Context dark grey to black, hyphal system dimitic .. Nigroporus Murr. (N. vinous)
7’. Context reddish to orange, hyphal system trimitic Pytoporus P. Karst. (P. cinnabarinus)
8. Context dimitic, cystidioles absent ... 8
8’. Context trimitic, cystidioles frequently present ... Coriolopsis Murr.
9. Sporophore dark at the base, reddish elsewhere, pileate Earliella Murr. (E. scabrosa)
9’. Sporophore creamish, thin, effused to reflexed ... 10
10. Sporophore reddish towards reflexed basal region; pores daedaloid in older regions Datronia Donk (D. mollis)
10’. Sporophore creamish throughout; poroid .. Trametes Fr.

1. Pileus surface glabrous; pores 6–8 per mm; dissepiments upto 50μm thick C. sanguinaria
1’. Pileus surface hisrate to scrobuse; pores less than 5 per mm; dissepiments more than 50 μm thick C. telfari

1. Stipe central to slightly excentric, yellow to yellowish-brown; sporophores infundibuliform; pileus surface glabrous; spores 5–6.75 x 1.75–2.25 μm ... M. xanthopus
1’. Stipe lateral, blackish-brown; sporophores fiveliform to spathulate; pileus surface velutinete while young, seldom glabrous when old; spores 3.5–4 x 1.5–2 μm ... M. affinis
New records of polypores from Western Ghats Iqbal et al.

Polyporus S. Str. Fr. Syst. Mycol. 1: 341, 1821

1. Stipe central to excentric ... *P. arcularius*
1'. Stipe distinctly lateral ... 2

2. Pileus surface dark coloured; spores 3–5 per mm... 3
2'. Pileus surface whitish; pores 7–8 per mm... *P. dictyopus*

3. Pileus surface dark brown to black when old; margin thick rounded................................. *P. virgatus*
3'. Pileus surface reddish-yellow; margin thin and pointed.. *P. grammacephalus*

Trametes Fr. Fl. Scan. P. 339, 1835.

1. Pileus surface velutinate, hirsute, or strigose... 2
1'. Pileus surface glabrous... 4

2. Pileus surface finely tomentose, glabrescent when mature, white to cream-coloured...................... *T. cotonea*
2'. Pileus surface adpressed-velutinate to strigose or agglutinated... 3

3. Pileus surface milky white azonate or faintly zonate.. *T. lactinea*
3'. Pileus surface pale grey to brownish, deeply zonate.. *T. hirsuta*

4. Pileus surface partly dark brown to soot brown; stipe rudimentary or converging; pores 5–6 per mm *T. cingulata*
4'. Pileus surface yellowish, sessile; pores 6–8 per mm.. *T. marianna*

One species collected during the study: *Oxyporus mollimus* (Pat.) D.A.Reid

Oxyporus mollimus (Pat.) D.A.Reid

Threatened Taxa
Communications

People’s attitudes toward Striped Hyena (*Hyaena hyaena* Linnaeus, 1758) (Mammalia: Carnivora: Hyaenidae) conservation in lowland Nepal
-- Shivish Bhandari & Mukesh Kumar Chalise, Pp. 9125–9130

On the Behaviour, abundance, habitat use and potential threats of the Gangetic Dolphin (*Platanista gangetica*) in southern West Bengal, India
-- Mahua Roy Chowdhury, Sangita Mitra & Saswati Sen, Pp. 9131–9137

-- Faraz Akrim, Tariq Mahmood, Muhammad Siddique Awan, Siddiqa Qasim Butt, Durr-e-Shawar, Muhammad Arslan Asadi & Imad-ul-din Zangi, Pp. 9138–9143

Indigenous ornamental freshwater ichthyo fauna of the Sundarban Biosphere Reserve, India: status and prospects
-- Sandipan Gupta, Sourabh Kumar Dubey, Raman Kumar Trivedi, Bimal Kinkar Chand & Samir Banerjee, Pp. 9144–9154

Pollination ecology and fruiting behavior of *Pavetta indica* L. (Rubiaceae), a keystone shrub species in the southern Eastern Ghats forest, Andhra Pradesh, India

Short Communications

On the status of the Long-tailed Marmot (*Marmota caudata*) (Mammalia: Rodentia: Sciuridae) in Kargil, Ladakh (Indian Trans-Himalaya)
-- Tanveer Ahmed, Mohammad Shoeb, Pankaj Chandan & Affifullah Khan, Pp. 9171–9176

The decline of the interspecific agonistic displays in an adult female Indian Eagle Owl (*Bubo bengalensis*) (Aves: Strigiformes: Strigidae): a case of habituation to human approach
-- M. Eric Ramanujam, Pp. 9177–9181

Effect of vehicular traffic on wild animals in Sigur Plateau, Tamil Nadu, India

Range extension of *Heliogomphus lyratus* Fraser, 1933 (Anisoptera: Gomphidae) with notes on its identification, habits and habitat
-- Amila P. Sumanapala & Himesh D. Jayasinghe, Pp. 9190–9194

A second record of *Knipowitschia byblisia* Ahnelt, 2011 (Teleostei: Perciformes: Gobiidae) from southwestern Anatolia, Turkey
-- H. Ahnelt, Pp. 9195–9197

New records of polypores (Basidiomycota: Aphyllophorales) from the southern Western Ghats with an identification key for polypores in Peechi-Vazhani Wildlife Sanctuary, Kerala, India
-- A. Muhammed Iqbal, Kattany Vidyasagar & P. Narayan Ganesh, Pp. 9198–9207

Notes

Notes on three species of Palaearctic satyrinae (Lepidoptera: Nymphalidae) from northwestern Himalaya, India
-- Arun P. Singh, Pp. 9208–9215

Two additions to the flora of the Palni Hills, southern India
-- S. Soosairaj, P. Raja, B. Balaguru & T. Dons, Pp. 9216–9220