SHORT COMMUNICATION

SEED GERMINATION STUDIES ON GYMNACRANThERA CANARICA
(KING) WARb. - A VULNERABLE TREE SPECIES OF A HIGHLY
THREATENED MYRISTICA SWAMP ECOSYSTEM

K. Keshavachandra & G. Krishnakumar

26 JULY 2016 | VOl. 8 | NO. 7 | PP. 9009–9013
10.11609/jott.2152.8.7.9009-9013
Seed germination studies on Gymnacranthera canarica (King) Warb. - A vulnerable tree species of a highly threatened Myristica swamp ecosystem

K. Keshava Chandra & G. Krishnakumar

1,2 Department of Applied Botany, Mangalore University, Mangalagangothri, Karnataka 574199, India
1 sasyakesha@gmail.com, 2 kkgtaxo13@gmail.com (corresponding author)

Abstract: Gymnacranthera canarica (King) Warb. is an exclusive Myristica swamp species endemic to the Western Ghats. The Myristica swamp is a Critically Endangered ecosystem. Studies were carried out to assess the viability, germination and storage behaviour of Gymnacranthera canarica seeds. In the present study, it was observed that seeds have shown an initiation of germination after two weeks. A maximum of 90% germination was recorded when the initial moisture content was 38.04 ± 1.75%. A decreased percentage (3%) was observed when the moisture content reached 14.26 ± 2.3 after 70 days of storage. Seeds failed to germinate beyond this moisture level. A desiccation study showed recalcitrant behaviour and seeds can be stored in lab conditions for up to two and half months.

Keywords: Gymnacranthera canarica, germination, moisture content, Myristica swamps, polyembryony, seed storage, viability.

The genus Gymnacranthera Warb. belongs to the family Myristicaceae with seven species in the Indo-Malayan region (Mabberly 1987). Gymnacranthera canarica (King) Warb. is an endemic and vulnerable tree species (WCMC 1998) exclusively found in Myristica swamp ecosystems of evergreen forests in the Western Ghats. The Myristica swamp ecosystem was first reported by Krishnamoorthy (1960) from Kulathupuzha region of the Western Ghats, Kerala, which is a forest patch in the perennial swampy regions in the evergreen forests dominated either by Gymnacranthera canarica (King) Warb. or Myristica fatua Houtt. var. magnifica (Bedd.) Sinclair. or both. These trees possess a modified root system, knee roots (Image 1A) with prominent lenticels on the surface for respiration in order to survive in the swamp. These ecosystems are virtually living museums of ancient life. These relic forests are often considered as ancient forest patches (Chandran et al. 2010). Champion & Seth (1968) classified this type of vegetation patch as tropical fresh water swamp forests (4C/FSI).

The occurrence of swamps depends on non-biotic conditions like flat bottomed or gently sloping valleys in between heavily forested hills, deep soil in the adjoining hills with rock allowing water storage above the rock layer, slow and continued water seepage into the valley and an average of 3,000mm rain fall (Chandran et al. 1999; Varghese et al. 1999; Nair et al. 2007). Hence, these swamps are highly restricted in distribution and occurrence and are considered as critically endangered ecosystems (Roby et al. 2014).

The seed of Gymnacranthera conforms to the fruit with testa and bright red coloured aril (Image 1B). Seeds are used in the manufacture of candles (Gamble 1921). Seeds contain much fat, which is probably an adaptation for dispersal and survival under swampy conditions (Tambat et al. 2007). The present study was made to...
assess the germination behaviour, storage and viability in seeds of *Gymnacranthera canarica*.

Materials and Methods

Seeds of *Gymnacranthera canarica* (King.) Warb. were collected from the *Myristica* swamp forest in Belthangady Taluk of Dakshina Kannada District, Karnataka in August 2012. The aril was removed from the collected seeds (Image 1C) and washed with water. Seed samples without any insect infestation and physical damage were selected for the experiment. To assess the viability and germination behaviour, initially the seeds were sown in a sand bed twice with 10 days interval. Later, they were sown at an interval of five days up to 100 days in two replicates. Sixty seeds were taken in each experiment. The remaining seeds were used to test moisture content and for a viability test.

Germination test

The germination percentage was determined by using the standard sand bed method (International Seed Testing Association 1985). Sand was taken in clean plastic trays of required size. The seeds were pressed onto the surface of sand; seeds were placed at a distance of 4 cm on the sand bed (ISTA 1991). Seeded sand beds were watered daily. Germination was scored on the emergence of radicle (2cm in length) and the results are expressed as percentage of seeds germinated (Image 1D).

Seed viability

Seed viability was evaluated by taking seeds randomly from the seed lot, treating dissected seed with embryo with 1% 2, 3, 5 - triphenyl tetrazolium chloride solution (TZ) for 17 hours in darkness (ISTA 1999).

Moisture content

The Moisture content (MC) of the whole seed was determined following a low constant oven drying method (ISTA 1991). Randomly selected seeds were cut into pieces of definite quantity (5g). Then dried at 103°C for 17 hours in a hot air oven. This experiment was done in triplicate. Seed MC was calculated on a fresh mass basis.

\[
\text{Moisture percentage} = \frac{M_1 - M_3}{M_2 - M_1} \times 100
\]

- \(M_1\) - is the weight of Petri plates;
- \(M_2\) - is the weight of Petri plates with seeds before drying;
- \(M_3\) - is the weight of Petri plates with seeds after drying.

Desiccation study

After procuring the seeds, clean and pure seeds were selected for the study. The initial fresh moisture content of the seeds was first determined using the above method; viability is checked by the Tetrazolium test.
and the seeds were desiccated up to 10–12 % moisture content (Hong & Ellis 1996). Desiccation was performed by mixing equal amounts of self-indicating silica gel in glass desicators. The seeds were mixed twice a day to get proper aeration (IPGR 2000; Varghese et al. 2002). The data obtained on seed germination was used for the following parameters.

Cumulative daily total number of germination of seeds (CDTG)

Germination speed index (GSI): Germination speed was estimated according to the method prescribed by Maguire (1962)

\[GSI = \frac{G_1}{T_1} + \frac{G_2}{T_2} + \frac{G_3}{T_3} + \cdots + \frac{G_n}{T_n} \]

Where, \(G_1 \): Number of seeds germinated on first day
\(G_2 \): Number of seeds germinated on second day
\(G_3 \): Number of seeds germinated on third day
\(T_1 \): Day one; \(T_2 \): Day two; \(T_3 \): Day three

Germination energy (G.E.): It is the number of days required to attain 50% of germination (Allen 1958).

Germination percent: It is the ratio of number of seeds germinated to the seeds kept for germination

\[\text{Germination percent} \% = \frac{\text{No. of seeds germinated}}{\text{No. of seeds kept for germination}} \times 100 \]

Statistical analysis: Statistical analysis was done by using analysis of variance (Anova) in Sigma Plot 11.0

RESULTS AND DISCUSSION

Seeds of Gymnacranthera canarica are solitary and enclosed in a dark red coloured fleshy aril. Embryos are very small. Hypogeal germination is observed. This type of germination is most prevalent in species associated with seasonally flooded habitats (Smith et al. 2009). Germination started at the end of two weeks and the first leaf occurrence started after seven weeks (Table 1). Based on the germination period, these seeds can be assigned to the ‘rapid’ category (Rajeshwari 2001).

Tambat et al. (2006) reported a minimum of 40% of germination in controlled conditions, i.e. seeds without any treatment and a maximum of 79% of germination, in these seeds treated with gibberellic acid while working on the enhancement of seed germination in Gymnacranthera canarica. However, in the present study, a maximum of 90% and a minimum of 3% germination were observed without any treatment. Fresh seeds subjected to Tetrazolium test showed 98% viability. The maximum seed germination recorded was 90%. This difference in seed viability and percentage of germination were seen in earlier studies also by Tambat et al. (2006). This is attributed to the presence of dehydrogenase enzyme in the other living cells in immature seeds which reduces 2,3,5 triphenyl tetrazolium chloride, forming bright red, stable, triphenyl formazan. These immature seeds fail to germinate. It is also possible in seeds infected with fungi which react with tetrazolium forming a red colour (R.K. Mittal pers. comm. 1997).

Initial moisture content of the seed was 38.04 ± 1.7 % which was significantly decreased on the 10th day (28.82 ± 1.56%). A steady decrease in the moisture content was observed on subsequent days. On the 50th day the moisture content was 16.44 ± 2.57 %. When the MC content reached 14.26 ± 2.3 (seeds kept after 70 days of storage), there was no germination. Only, one seed germination was observed on the seeds sown on
Seed germination studies on Gymnacranthera canarica

Keshavachandra & Krishnakumar

Table 2. Deterioration in seed germination, germination energy and germination speed index of Gymnacranthera canarica (*p<0.05)

<table>
<thead>
<tr>
<th>Days</th>
<th>Germination speed</th>
<th>Germination energy</th>
<th>Germination speed index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76.3±2.8*</td>
<td>4.5±3.5*</td>
<td>20.79±1.12*</td>
</tr>
<tr>
<td>10</td>
<td>64.3±1.5*</td>
<td>6.5±0.5*</td>
<td>18.9±0.66*</td>
</tr>
<tr>
<td>20</td>
<td>62.9±2.5*</td>
<td>10±1.2*</td>
<td>18.8±0.24*</td>
</tr>
<tr>
<td>25</td>
<td>62.5±1.2*</td>
<td>10±2*</td>
<td>12.7±1.4*</td>
</tr>
<tr>
<td>30</td>
<td>59.3±1.5*</td>
<td>10±3.5*</td>
<td>12.3±1.5*</td>
</tr>
<tr>
<td>35</td>
<td>55.6±1.29*</td>
<td>11±1*</td>
<td>7.9±0.26*</td>
</tr>
<tr>
<td>40</td>
<td>54.6±1.36*</td>
<td>11.5±1.5*</td>
<td>8.5±0.97*</td>
</tr>
<tr>
<td>45</td>
<td>53.95±1.83*</td>
<td>14.5±0.5*</td>
<td>6.4±1.92*</td>
</tr>
<tr>
<td>50</td>
<td>25.2±12.6*</td>
<td>23±1*</td>
<td>4.8±1.1*</td>
</tr>
<tr>
<td>55</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>60</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>65</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>70</td>
<td>0.5±0.5*</td>
<td>0</td>
<td>0.01±0.01*</td>
</tr>
</tbody>
</table>

and germination energy index. Decrease in germination energy and germination percent is due to the seed deterioration (Falleri 1994). The germination speed significantly decreased (p<0.05) at 50–70 days and germination energy also followed a similar trend. A significantly high germination speed index was observed on the first day (Table 2). The speed of germination is an expression of seed vigour and it is one of the seed quality parameters (Ahmadloo et al. 2011). High vigour seeds germinate faster than the low vigour seeds under any conditions (Schmidt et al. 2000). The Cumulative Daily Total number of seeds germinated supports this (Fig. 2).

Polyploidy

Out of the 800 seeds sown, 10 seeds showed twin seedlings indicating polyploidy (Image IE). Bhat & Kaveriappa (2002) have reported polyploidy in Gymnacranthera canarica. In Myristicaceae, polyploidy was first reported by Kannan (1971). Recently, Gunaga & Vasudeva (2011) have reported twin seedlings in Semecarpus kathalikanensis which is an obligatory Myristica swamp species.

CONCLUSION

Gymnacranthera canarica seeds are classified as recalcitrants. The seeds can be stored up to two and half months in lab conditions (28±4 0C) with critical moisture of 16.44±2.57 %. – 14.26±2.3 %. Below this seeds fail to germinate. This germination studies will complement the conservation efforts of this obligate swamp species.

REFERENCES

Chandra, K.K., G. Krishnakumar & H.S. Shenoy (2014). Seed germination studies on Lophopetalum wightianum Arn. an
Seed germination studies on Gymnacranthera canarica

Keshavachandra & Krishnakumar

Article

Bats (Mammalia: Chiroptera) of the southeastern Truong Son Mountains, Quang Ngai Province, Vietnam
-- Nguyen Truong Son, Thomas J. O’Shea, Jeffery A. Gore, Csorba Gabor, Vuong Tan Tu, Tatsuo Oshida, Hideki Endo & Masaharu Motokawa, pp. 8953–8969

Communication

An assessment of human-elephant conflict and associated ecological and demographical factors in Nilambur, Western Ghats of Kerala, southern India

Review

An updated checklist of shrimps on the Indian coast

View Point

Can philately sensitize people to wildlife / conservation? An introduction to thematic philately and a visual treatise concerning the variety of philatelic material available on owls (Aves: Strigiformes)
-- M. Eric Ramanujam, Pp. 8989–9003

Short Communications

Noteworthy additions to the flora of Uttarakhand, western Himalaya, India
-- Ishwari D. Rai, Gajendra Singh & Gopal S. Rawat, Pp. 9004–9008

Seed germination studies on Gymnacranthera canarica (King) Warb. - a Vulnerable tree species of a highly threatened Myristica swamp ecosystem
-- K. Keshavachandra & G. Krishnakumar, Pp. 9009–9013

A first note on foliicolous lichens of Assam, India
-- Pooja Gupta & G.P. Sinha, Pp. 9014–9023

Notes

A recent record of the Indo-Pacific Humpback Dolphin Sousa chinensis (Osbeck, 1765), (Mammalia: Cetartiodactyla: Delphinidae) from the western shores of Kachchh, Gujarat, India

A confirmation of the occurrence of Euploea sylvester hopei Felder & Felder, 1865 (Double-branded Blue Crow) from Kaptai National Park, Rangamati District, Bangladesh
-- Tahsinur Rahman Shihan, Pp. 9027–9029

A century later: Tricolored Pied Flat Coladenia indrani uposathra Fruhstorfer, 1911 (Hesperiidae: Pyrginae) and Crenulate Oakblue Apporosa atkinsoni Hewitson, 1869 (Lycaenidae: Theclinae) reported from Manipur, India
-- Baleshwor Singh Soibam, Harmee Huidrom & Jatishwor Singh Irungbam, Pp. 9030–9033

On the distribution of Aeshna petalura Martin, 1908 (Odonata: Anisoptera: Aeshnidae) in the Indian subcontinent
-- R. Babu & G. Srinivasan, Pp. 9034–9037

Notes on the occurrence of Mortonagrion aborense Laidlaw, 1914 (Odonata: Coenagrionidae) from lower West Bengal, India
-- Arajush Payra & Ashish D. Tiple, Pp. 9038–9041

First record of Speculitermes chadaensis Chatterjee & Thapa, 1964 (Isopteridae) from the Western Ghats, India

A first report of egg parasitism in the Tropical Tasar Silkworm Antheraea mylitta (Drury) occurring on cashew
-- K. Vanitha & S. Santhosh, Pp. 9045–9047

Gentiana saginoides Burkill (Magnoliopsida: Gentianales: Gentianaceae) rediscovered from Sunderduhnga Valley in Uttarakhand 155 years after description: notes on its population status
-- Dharmendra S. Rawat, Manish Karnatak, Pp. 9048–9052

A recent record of Gentiana saginoides Burkill (Magnoliopsida: Gentianales: Gentianaceae) rediscovered from Sunderduhnga Valley in Uttarakhand 155 years after description: notes on its population status
-- Dharmendra S. Rawat, Charan S. Rana, Harish Singh & Manish Karnatak, Pp. 9048–9052

Notes on the occurrence of Mortonagrion aborense Laidlaw, 1914 (Odonata: Coenagrionidae) from lower West Bengal, India
-- Arajush Payra & Ashish D. Tiple, Pp. 9038–9041

First record of Speculitermes chadaensis Chatterjee & Thapa, 1964 (Isopteridae) from the Western Ghats, India

A first report of egg parasitism in the Tropical Tasar Silkworm Antheraea mylitta (Drury) occurring on cashew
-- K. Vanitha & S. Santhosh, Pp. 9045–9047

Gentiana saginoides Burkill (Magnoliopsida: Gentianales: Gentianaceae) rediscovered from Sunderduhnga Valley in Uttarakhand 155 years after description: notes on its population status
-- Dharmendra S. Rawat, Manish Karnatak, Pp. 9048–9052

Notes on the occurrence of Mortonagrion aborense Laidlaw, 1914 (Odonata: Coenagrionidae) from lower West Bengal, India
-- Arajush Payra & Ashish D. Tiple, Pp. 9038–9041

First record of Speculitermes chadaensis Chatterjee & Thapa, 1964 (Isopteridae) from the Western Ghats, India

A first report of egg parasitism in the Tropical Tasar Silkworm Antheraea mylitta (Drury) occurring on cashew
-- K. Vanitha & S. Santhosh, Pp. 9045–9047

Gentiana saginoides Burkill (Magnoliopsida: Gentianales: Gentianaceae) rediscovered from Sunderduhnga Valley in Uttarakhand 155 years after description: notes on its population status
-- Dharmendra S. Rawat, Manish Karnatak, Pp. 9048–9052

Notes on the occurrence of Mortonagrion aborense Laidlaw, 1914 (Odonata: Coenagrionidae) from lower West Bengal, India
-- Arajush Payra & Ashish D. Tiple, Pp. 9038–9041

First record of Speculitermes chadaensis Chatterjee & Thapa, 1964 (Isopteridae) from the Western Ghats, India

A first report of egg parasitism in the Tropical Tasar Silkworm Antheraea mylitta (Drury) occurring on cashew
-- K. Vanitha & S. Santhosh, Pp. 9045–9047

Gentiana saginoides Burkill (Magnoliopsida: Gentianales: Gentianaceae) rediscovered from Sunderduhnga Valley in Uttarakhand 155 years after description: notes on its population status
-- Dharmendra S. Rawat, Manish Karnatak, Pp. 9048–9052