

Building evidence for conservation globally

Journal of Threatened TAXA

10.11609/jott.2026.18.1.28151-28262
www.threatenedtaxa.org

26 January 2026 (Online & Print)
18 (1): 28151-28262
ISSN 0974-7907 (Online)
ISSN 0974-7893 (Print)

Open Access

Publisher

Wildlife Information Liaison Development Societywww.wild.zooreach.org

Host

Zoo Outreach Organizationwww.zooreach.org

Srivari Illam, No. 61, Karthik Nagar, 10th Street, Saravanampatti, Coimbatore, Tamil Nadu 641035, India
Registered Office: 3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore, Tamil Nadu 641006, India

Ph: +91 9385339863 | www.threatenedtaxa.org

Email: sanjay@threatenedtaxa.org

EDITORS

Founder & Chief Editor

Dr. Sanjay Molur

Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641006, India

Assistant Editor

Dr. Chaithra Shree J., WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Managing Editor

Mr. B. Ravichandran, WILD/ZOO, Coimbatore, Tamil Nadu 641006, India

Associate Editors

Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India**Dr. Ulrike Streicher**, Wildlife Veterinarian, Eugene, Oregon, USA**Ms. Priyanka Iyer**, ZOO/WILD, Coimbatore, Tamil Nadu 641006, India

Board of Editors

Dr. Russel Mittermeier

Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mewa Singh Ph.D., FASc, FNA, FNAsc, FNAPsy

Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash

Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, USA

Dr. Fred Pluthero

Toronto, Canada

Dr. Priya Davidar

Sigur Nature Trust, Chadapatti, Mavinhalla PO, Nilgiris, Tamil Nadu 643223, India

Dr. John Fellowes

Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé

Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan

Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

English Editors

Mrs. Mira Bhojwani, Pune, India**Dr. Fred Pluthero**, Toronto, Canada

Copy Editors

Ms. Usha Madgunki, Zooreach, Coimbatore, India**Ms. Trisa Bhattacharjee**, Zooreach, Coimbatore, India**Ms. Paloma Noronha**, Daman & Diu, India

Web Development

Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting

Mrs. Radhika, Zooreach, Coimbatore, India**Mrs. Geetha**, Zooreach, Coimbatore India

Fundraising/Communications

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2021–2023

Fungi

Dr. B. Shivaraju, Bengaluru, Karnataka, India**Dr. R.K. Verma**, Tropical Forest Research Institute, Jabalpur, India**Dr. Vatsavaya S. Raju**, Kakatiya University, Warangal, Andhra Pradesh, India**Dr. M. Krishnappa**, Jnana Sahyadri, Kuvenpu University, Shimoga, Karnataka, India**Dr. K.R. Sridhar**, Mangalore University, Mangalagangotri, Mangalore, Karnataka, India**Dr. Gunjan Biswas**, Vidyasagar University, Midnapore, West Bengal, India**Dr. Kiran Ramchandra Ranadive**, Annaheb Magar Mahavidyalaya, Maharashtra, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India**Dr. N.P. Balakrishnan**, Ret. Joint Director, BSI, Coimbatore, India**Dr. Shonil Bhagwat**, Open University and University of Oxford, UK**Prof. D.J. Bhat**, Retd. Professor, Goa University, Goa, India**Dr. Ferdinand Boero**, Università del Salento, Lecce, Italy**Dr. Dale R. Calder**, Royal Ontario Museum, Toronto, Ontario, Canada**Dr. Cleofas Cervancia**, Univ. of Philippines Los Baños College Laguna, Philippines**Dr. F.B. Vincent Florens**, University of Mauritius, Mauritius**Dr. Merlin Franco**, Curtin University, Malaysia**Dr. V. Irudayaraj**, St. Xavier's College, Palayamkottai, Tamil Nadu, India**Dr. B.S. Kholia**, Botanical Survey of India, Gangtok, Sikkim, India**Dr. Pankaj Kumar**, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, USA**Dr. V. Sampath Kumar**, Botanical Survey of India, Howrah, West Bengal, India**Dr. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Vijayasankar Raman**, University of Mississippi, USA**Dr. B. Ravi Prasad Rao**, Sri Krishnadevaraya University, Anantapur, India**Dr. K. Ravikumar**, FRLHT, Bengaluru, Karnataka, India**Dr. Aparna Watve**, Pune, Maharashtra, India**Dr. Qiang Liu**, Xishuangbanna Tropical Botanical Garden, Yunnan, China**Dr. Noor Azhar Mohamed Shazili**, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia**Dr. M.K. Vasudeva Rao**, Shiv Ranjan Housing Society, Pune, Maharashtra, India**Prof. A.J. Solomon Raju**, Andhra University, Visakhapatnam, India**Dr. Manda Datar**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. M.K. Janarthanam**, Goa University, Goa, India**Dr. K. Karthigeyan**, Botanical Survey of India, India**Dr. Errol Vela**, University of Montpellier, Montpellier, France**Dr. P. Lakshminarasiham**, Botanical Survey of India, Howrah, India**Dr. Larry R. Noblick**, Montgomery Botanical Center, Miami, USA**Dr. K. Haridasan**, Pallavur, Palakkad District, Kerala, India**Dr. Analinda Manila-Fajard**, University of the Philippines Los Banos, Laguna, Philippines**Dr. P.A. Siru**, Central University of Kerala, Kasaragod, Kerala, India**Dr. Afroz Alam**, Banasthali Vidyapith (accredited A grade by NAAC), Rajasthan, India**Dr. K.P. Rajesh**, Zamorin's Guruvayurappan College, GA College PO, Kozhikode, Kerala, India**Dr. David E. Boufford**, Harvard University Herbaria, Cambridge, MA 02138-2020, USA**Dr. Ritesh Kumar Choudhary**, Agharkar Research Institute, Pune, Maharashtra, India**Dr. A.G. Pandurangan**, Thiruvananthapuram, Kerala, India**Dr. Navendu Page**, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India**Dr. Kannan C.S. Warrier**, Institute of Forest Genetics and Tree Breeding, Tamil Nadu, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India**Dr. D.B. Bastawade**, Maharashtra, India**Dr. Partha Pratim Bhattacharjee**, Tripura University, Suryamaninagar, India**Dr. Kailash Chandra**, Zoological Survey of India, Jabalpur, Madhya Pradesh, India**Dr. Ansie Dippenaar-Schoeman**, University of Pretoria, Queenswood, South Africa**Dr. Rory Dow**, National Museum of natural History Naturalis, The Netherlands**Dr. Brian Fisher**, California Academy of Sciences, USA**Dr. Richard Gallon**, Ilandudno, North Wales, LL30 1UP**Dr. Hemant V. Ghate**, Modern College, Pune, India**Dr. M. Monwar Hossain**, Jahangirnagar University, Dhaka, BangladeshFor Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scopeFor Article Submission Guidelines, visit <https://threatenedtaxa.org/index.php/JoTT/about/submissions>For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover

Cover: Golden-headed Lion Tamarin *Leontopithecus chrysomelas*. Watercolor and acrylics by P. Kritika.

People's perceptions on the impacts of select linear infrastructure projects on avifauna in Chhattisgarh, India

C.P. Ashwin¹ , J.M. Alby² & P.R. Arun³

¹⁻³ Sálim Ali Centre for Ornithology and Natural History, South India Centre of WII, Anaikatty Post, Coimbatore, Tamil Nadu 641108, India.

¹⁻³ Bharathiar University, Coimbatore, Tamil Nadu 641046, India.

¹ ashwincp95@gmail.com (corresponding author), ² albyjacob.jm@gmail.com, ³ eiasacon@gmail.com

Abstract: India's rapid economic growth has led to widespread expansion of linear infrastructure (LI) such as roads, railways, and power lines, often with significant ecological impacts on wildlife, including avifauna. Understanding public perceptions of these impacts is crucial for participatory conservation and sustainable infrastructure planning. This study assessed people's perceptions of avifaunal impacts from four major LI projects in Chhattisgarh: Ranchi–Dharamjaigarh (765 kV), Korba–Jabalpur (765 kV), and Champa–Kurukshetra (800 kV) transmission lines, as well as the East Rail Corridor. Structured interviews were conducted with 868 rural residents using close-ended questions. Responses were analysed using binary scoring, chi-square tests, and multinomial logistic regression. Overall, 56.6% perceived negative impacts on avifauna, with 51.7% reporting declines in common bird species. While 58.5% of respondents observed no change in migratory birds, 41.5% reported a decline; 43.5% noted electrocution and collision risks. Perceptions varied significantly with respondents' age, education, tribal status, occupation, and proximity to LI. Older, less-educated, and non-tribal individuals expressed more negative views, and those living closer to LI exhibited heightened concern. Despite these, neutral views were prevalent, reflecting a lack of definitive environmental awareness or LI's impact on avifauna. These findings underscore the need for integrating biodiversity safeguards into infrastructure planning and enhancing public awareness through targeted environmental education.

Keywords: Biodiversity impacts, bird responses, community perceptions, conservation planning, electrocution and collision risks, environmental awareness, rural residents, socio-demographic factors.

Editor: H. Byju, Coimbatore, Tamil Nadu, India.

Date of publication: 26 January 2026 (online & print)

Citation: Ashwin, C.P., J.M. Alby & P.R. Arun (2026). People's perceptions on the impacts of select linear infrastructure projects on avifauna in Chhattisgarh, India. *Journal of Threatened Taxa* 18(1): 28186-28193. <https://doi.org/10.11609/jott.10202.18.1.28186-28193>

Copyright: © Ashwin et al. 2026. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: No funding was received for this study. Part of Bharathiar University PhD work to the first author.

Competing interests: The authors declare no competing interests.

Author details: ASHWIN C.P., PhD scholar at the Salim Ali Centre for Ornithology and Natural History (SACON) and Bharathiar University, Coimbatore, India. Specializes in wildlife management, ecology, and impact assessment of developmental projects, with strong analytical skills and a strategic approach to harmonize ecological conservation with applied research. ALBY J. MATTATHIL, PhD scholar at SACON and Bharathiar University, Coimbatore, India. Research focuses on ornithology, behavioral ecology, conservation biology, and environmental impact assessment, with specialization in human-elephant negative interactions. DR. P.R. ARUN, senior principal scientist and head of the Environmental Impact Assessment Division at SACON, India. The division provides expert consultancy on environmental and biodiversity issues, balancing development with conservation through applied research, Environmental Impact Assessments (EIA), and development of Environment Management Plans (EMPs). His research interests include environmental impact assessment, entomology, butterfly ecology, and environmental science. He has led numerous research projects, supervised multiple PhD scholars, and contributed scientific expertise to environmental policy and sustainable management strategies.

Author contributions: CPA—lead in conceptualization, data collection, data analysis, manuscript drafting, and visualization; contributed equally to manuscript review and editing. JMA—contributed equally to data collection, interpretation of results, and manuscript review and editing. PRA—contributed equally to methodology and statistical inputs; lead supervision and manuscript review and editing

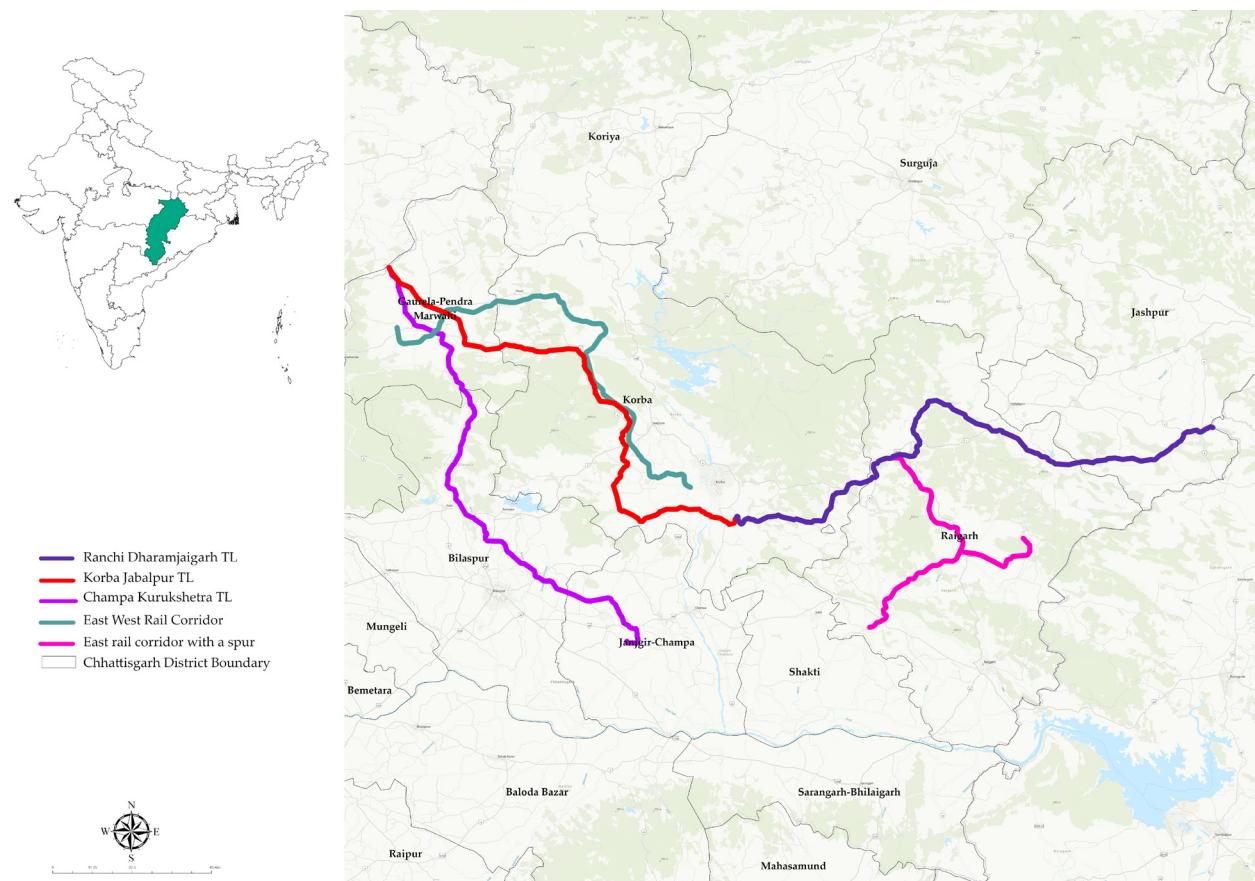
Acknowledgements: We are grateful to the Forest Department, Chhattisgarh and the Sálim Ali Centre for Ornithology and Natural History for supporting this study. We sincerely thank our friends especially Nandu V. S. and Avadhoot Velankar for their encouragement and constant support. We are also thankful to all the field personnel who assisted us during the surveys and made the fieldwork possible.

INTRODUCTION

Tropical forests are among the most biodiverse and ecologically significant ecosystems, yet they are increasingly threatened by land-use change and fragmentation. One major driver of this fragmentation is the expansion of linear infrastructure (LI), which traverses landscapes in elongated forms, often bisecting habitats. This includes roads, railways, transmission lines, pipelines, and canals (Geist & Lambin 2002; Geneletti 2004; Laurance et al. 2014; Nayak et al. 2020). While LI play a vital role in economic development and connectivity (van der Grift et al. 2015), they also contribute to environmental degradation through habitat loss, increased wildlife mortality, and pollution (Forman & Alexander 1998; De Jonge et al. 2022; Ashwin et al. 2023). Avifauna are particularly vulnerable to LI through electrocution, collisions, and displacement (Bevanger 1998; Loss et al. 2014; van der Grift et al. 2015; Manigandan et al. 2022). While several studies have linked LIs to declines in biodiversity, including bird populations, some studies have also indicated that certain bird species may exploit LI corridors for foraging or perching (van der Grift et al. 2015) and nesting (Byju et al. 2023), highlighting the complexity of ecological responses to the LIs.

People's perceptions of such impacts are critical in shaping conservation and development strategies. Perceived risks and benefits are influenced by individual opinions, environmental knowledge, and sociodemographic factors such as age, education, and occupation (Kaczensky et al. 2004; Viklund 2004; Manigandan et al. 2024). People's perceptions, defined as how individuals interpret and evaluate environmental issues, can provide insights into local ecological knowledge and guide effective conservation interventions (Berkes et al. 2000; Huntington 2011; Bennett 2016) and identify knowledge gaps, plan awareness programs, and guide participatory approaches to conservation (Caily-Arnulphi et al. 2017; Champness et al. 2023).

Despite the recognized importance of perception studies in conservation, the views of local communities regarding LI impacts, especially on avifauna, remain underexplored in India. Particularly in Chhattisgarh, driven by the energy and mining sectors, little is known about how local communities perceive LI impacts on birds (Gajera et al. 2013). Projects such as thermal power plants, transmission lines, and railway corridors are transforming landscapes, raising concerns about ecological consequences and social acceptance. Such rapid development and intrusion of several LI


can have potential impacts on both people and the environment. Understanding LI's impacts on people and the surrounding environment is crucial for scientifically managing these impacts. There are very few systematic studies on birds in this region, and research on avifaunal responses to infrastructure expansion in Chhattisgarh is especially limited. This study, therefore, represents one of the first structured attempts to document community perceptions of bird impacts associated with major LI corridors in the state. Avifauna are particularly relevant in this context because birds are highly sensitive to habitat alteration, fragmentation, and electrocution or collision risks, making them strong ecological indicators of infrastructure impacts. Several stretches of the studied LI corridors pass through forest patches, agricultural landscapes, and open woodlands, where canopy removal, vegetation clearing, and disturbance have been reported. The heightened public awareness will lead to more effective conservation efforts geared towards lessening adverse consequences for both sides. Knowing more about people's views of the influence of LI could lead to better landscape and regional design and management. However, public perception alone cannot guide conservation or infrastructure planning and must be complemented with ecological assessments to ensure scientifically sound decisions.

Study area

Four selected linear infrastructures in the state of Chhattisgarh, India, were surveyed for the cause: the Ranchi–Dharamjaigarh Transmission Line (765 kV S/C Power Grid Transmission Line), Champa–Kurukshtera (800 kV S/C Power Grid Transmission Line), Korba–Jabalpur (765 kV S/C Power Grid Transmission Line), and the East Rail corridor (Figure 1). These linear

Image 1. Study area showing the Champa–Kurukshtera 800 kV single-circuit (S/C) power grid transmission line.

Figure 1. Study area map.

infrastructures intersect six districts in Chhattisgarh, namely Korba, Bilaspur, Gaurela-Pendra-Marwahi, Raigarh, Jangir-Champa, and Jashpur, with an approximate length of 711 km in total.

Chhattisgarh state covers 1,35,191 km², accounting for 4.1% of the country's total area. The LI routes cut across predominantly tropical dry deciduous forests, characterised by *Sal* *Shorea robusta* and associated mixed deciduous species, classified as northern tropical dry mixed deciduous forests (5B/C2; Champion & Seth 1968) (Forest Survey 2021). Chhattisgarh is home to a varied population with diverse ethnic, social, and religious backgrounds. It has the highest tribal population among all Indian states; one-third of the people in the state are officially categorized as scheduled castes or scheduled tribes (Dixit et al. 2023). Chhattisgarh has a total population of 2,55,45,198 people, with 12,832,895 males and 12,712,303 females. The literacy rate in Chhattisgarh is 70.28%. Male literacy rates are 80.27%, while female literacy rates are 60.24% (Census 2011). Rural areas are home to 76.76% of the total population, and most of them are farmers who primarily depend on

paddy cultivation.

Methods

A structured, close-ended questionnaire was designed to assess public perceptions of linear infrastructure (LI) impacts on avifauna, based on established guidelines, and expert review. The finalized survey comprised ten simple questions administered through face-to-face interviews, following Patton's (2002). Interviews, lasting 5–10 minutes, were conducted with 868 willing participants between October 2021 and July 2023 across 166 villages near selected LI routes in Korba, Bilaspur, Gaurela-Pendra-Marwahi, Raigarh, Jangir-Champa, and Jashpur. Villages were selected based on proximity to LI to ensure locally grounded responses. Participants included a diverse group: farmers, students, government employees, housewives, business owners, and daily wage workers. Prior to interviews, participants were briefed on the study's objectives and verbal consent was obtained.

The questionnaire had two sections: (1) socio-demographic data (gender, age, education, occupation,

tribal affiliation, proximity to LI, and duration of residence) (Naha et al. 2014; Chin et al. 2019) and (2) perception of LI impacts on avifauna. In this study, the term 'perception' refers specifically to respondents' views on the impact of LI on avifauna, including perceived effects on bird mortality, behaviour, and habitat. While the questionnaire was developed in English and Hindi, most interviews were conducted in local dialects with field support. Close-ended formats were preferred for efficiency and analytical clarity.

To help participants accurately identify bird species, a photo-elicitation approach was used during interviews. Photographs of commonly occurring birds from the region were shown to respondents. In addition, the Merlin Bird ID application (Cornell Lab of Ornithology) was used to display high-resolution images and, when required, to play bird calls to aid recall and confirmation. Responses were categorized as positive, neutral, or negative based on participants' observations and opinions. Perception was quantified using a binary scoring system: "Yes" = 1 and "No" = 0, resulting in a cumulative score from 0–10 (Darawsheh 2020; Ruan et al. 2022). Scores were categorized into three groups for multinomial logistic regression: negative (0–3), neutral (4–6), and positive (7–10). Data categorization followed standard practices, and all the ethical guidelines were strictly adhered to throughout the study (Gubbi 2006).

Data analysis

Analysis of qualitative data was done through content analysis (coding) or thematic analysis by categorizing themes according to the way they relate to research objectives and building relationships and implications as provided by Patton (2002). After data collection in the field, the data were organised, coded, classified, and tabulated using Microsoft Excel and descriptive statistics. In SPSS 23.0, data were cross-tabulated, and a chi-square test (notation: χ^2 df) was applied to all combinations of independent and dependent variables. To determine the factors that could predict the perceptions of people, a multinomial logistic regression model was fitted to the responses and was used to predict the probabilities of the different possible outcomes (Umaña-Hermosilla et al. 2020). Multinomial logistic regression utilizes maximum likelihood estimation to assess the likelihood of belonging to a specific category, allowing us to characterize the probability of a respondent's decision for a particular multinomial discrete choice, conditional on the values of the explanatory variables (Clark 2009; Umaña-Hermosilla et al. 2020). We use the multinomial function from the net package to estimate a multinomial

Table 1. Respondent demographics.

Demographic variables (M \pm SD)	Categories	Frequency (Percentage) n = 868
Age (1.13 \pm 0.86)	15–30 years	244 (28.1)
	31–45 years	295 (34)
	46–70 years	299 (34.4)
	> 71	30 (3.5)
Gender (0.22 \pm 0.42)	Male	674 (77.6)
	Female	194 (22.4)
Tribe/non-tribe (0.52 \pm 0.50)	Tribe	418 (48.2)
	Non-tribe	450 (51.8)
Education level (1.56 \pm 0.78)	Uneducated	35 (4)
	Primary	434 (50)
	High school	281 (32.4)
	Graduate and above	118 (13.6)
Occupation (3.35 \pm 1.58)	Business	16 (1.8)
	Farmer	436 (50.2)
	Government staff	34 (3.9)
	Homemaker	100 (11.5)
	Labour	174 (20)
	Students	108 (12.4)
Proximity to the LI (0.44 \pm 0.52)	0–300 m	502 (57.8)
	>300–600 m	354 (40.8)
	>600–900 m	12 (1.4)
Years of residency (0.66 \pm 0.58)	0–30 years	343 (39.5)
	>30–60 years	476 (54.8)
	>60–90 years	49 (5.6)

logistic regression model in R.

Respondent demographics

Most of the respondents (34.4%) were in the age group of 46–70, followed by 31–45 years (34%), 15–30 years (28.1%), and more than 70 years old (3.5%). Occupation-wise, 50% were farmers. Respondents were predominantly male (77.6%) since most of the female participants were reluctant to respond. In terms of tribal affiliation, 51.8% were non-tribal and 48.2% tribal. Education levels varied: 50% had primary education, 32.4% high school, 13.6% graduate or above, and 4% were uneducated. Regarding proximity to LI, 57.8% lived or owned land within 0–300 m, and 40.8% within 301–600 m. A majority (54.8%) had resided in the area for 31–60 years (Table 1).

RESULTS

Participant's response – summary

The study assessed public perceptions of LI impacts on avifauna. Overall, 56.6% of respondents perceived LI as having a negative effect on local bird populations, while 43.4% did not. A decline in common bird species post-installation was noted by 51.7%, whereas 48.3% reported no such change. Regarding migratory birds, 41.5% observed a decline, while 58.5% did not. Concerns about bird electrocution or collision were raised by 43.5% of respondents. Only 23.3% reported birds avoiding LI structures during flight, and 34.2% noted an increase in human–bird negative interactions after installation; 65.8% did not. A vast majority (91.6%) did not observe invasive plant proliferation post-installation. While 80.8% did not believe LI had positive effects on birds, 19.2% perceived some benefits. Increased sightings of birds of prey were reported by 10.7%, and 30.8% observed birds using LI pylons for perching, nesting, roosting, or foraging (Table 2).

PEOPLE PERCEPTION

People's perception on the impact of LI on avifauna

Chi-square tests revealed significant associations between perception of LI impacts on avifauna and multiple socio-demographic variables (Table 3). Age was significantly associated with perception ($p < 0.001$), with younger respondents (15–45 years) tending to be more neutral, while older groups (46+ years) expressed a mix

of views. Education level also influenced perceptions ($p < 0.001$); uneducated individuals more frequently expressed negative views, whereas those with formal education showed more neutral or varied responses. Tribal affiliation was strongly associated with perception ($p < 0.001$), with tribal respondents mostly neutral and non-tribal respondents more evenly distributed across categories. Occupation significantly affected perception ($p < 0.001$), with labourers showing a slightly more positive outlook. Proximity to LI was also significant ($p = 0.040$), with those living nearer expressing greater concern, though neutral views still dominated. Gender ($p = 0.188$) and years of residency ($p = 0.084$) were not significantly associated with perception.

FACTORS DETERMINING THE PEOPLE'S PERCEPTION OF LI.

Multinomial logistic regression results for people's perception on the impact of LI on avifauna (Reference category: Neutral)

Multinomial logistic regression analysis (Table 4) revealed several significant predictors of perception. Individuals aged 30–45 had slightly lower odds of negative perception compared to neutral ($\beta = -0.636$, $p < 0.1$). Males were not significantly associated with negative perception responses but showed a significant negative association with positive responses ($\beta = -0.544$, $p < 0.1$), indicating that males were less likely to report positive perceptions. Non-tribal respondents had significantly higher odds of both negative ($\beta = 1.212$, $p < 0.01$) and positive ($\beta = 0.858$, $p < 0.01$) perceptions, suggesting that non-tribal individuals were more likely to express stronger opinions in either direction. High school-educated individuals had slightly lower odds of negative perception ($\beta = -0.799$, $p < 0.1$), while graduates and above had significantly lower odds ($\beta = -1.163$, $p < 0.01$). Labourers had increased odds of negative perception ($\beta = 1.551$, $p < 0.01$) and suggesting that labourers were more likely to express negative views. Proximity to LI was a strong predictor; individuals living closer to the LI (0–900 m) were significantly more likely to express negative views, with extremely high coefficients ($\beta = 11.515$, $p < 0.01$). Residency of 31–60 years showed slightly lower odds of negative perception ($\beta = -0.493$), while those residing for 61–90 years had significantly higher odds of positive perception ($\beta = -1.377$, $p < 0.05$), suggesting that very long-term residents were less likely to express positive views.

Table 2. Participant's response summary.

	Variables	Yes	No
People's perception on the impact of LI on avifauna			
1	There is a negative impact of LI on the local Avifauna	491 (56.6%)	377 (43.4%)
2	Absence of regular/common bird species after the LI installation	449 (51.7%)	419 (48.3%)
3	Reduction in migratory birds after the LI installation?	360 (41.5%)	508 (58.5%)
4	LI is imposing significant threats to birds by Electrocution/Collision	378 (43.5%)	490 (56.5%)
5	Birds avoid LI during their flight	202 (23.3%)	666 (76.7%)
6	Human-wildlife conflict (birds) increased after the installation	297 (34.2%)	571 (65.8%)
7	Invasive plant species proliferation increased after the installation of LI	73 (8.4%)	795 (91.6%)
8	LI can positively affect the birds	167 (19.2%)	701 (80.8%)
9	Increased number of birds of prey after the installations	93 (10.7%)	775 (89.3%)
10	Birds utilising the LI pylon for perch, nest, roost, & foraging	267 (30.8%)	601 (69.2%)

Table 3. Peoples' perception on the impact of LI on avifauna.

People's perception on the impact of LI on avifauna		Negative (n)	Neutral (n)	Positive (n)	
Age	15–30 years	75 (30.7%)	95 (38.9%)	74 (30.3%)	$\chi^2 = 25.569, df = 6, p = 0.000$
	31–45 years	57 (19.3%)	142 (48.1%)	96 (32.5%)	
	46–70 years	75 (25.1%)	102 (34.1%)	122 (40.8%)	
	> 71	11 (36.7%)	15 (50.0%)	4 (13.3%)	
Gender	Male	58 (29.9%)	77 (39.7%)	59 (30.4%)	$\chi^2 = 3.345, df = 2, p = 0.188$
	Female	160 (23.7%)	277 (41.1%)	237 (35.2%)	
Tribe/non-tribe	Tribe	69 (16.5%)	224 (53.6%)	125 (29.9%)	$\chi^2 = 60.369, df = 2, p = 0.000$
	Non-tribe	149 (33.1%)	130 (28.9%)	171 (38.0%)	
Education level	Uneducated	17 (48.6%)	10 (28.6%)	8 (22.9%)	$\chi^2 = 25.696, df = 6, p = 0.000$
	Primary	102 (23.5%)	168 (38.7%)	164 (37.8%)	
	High school	57 (20.3%)	133 (47.3%)	91 (32.4%)	
	Graduate and above	42 (35.6%)	43 (36.4%)	33 (28.0%)	
Occupation	Business	2 (12.5%)	8 (50.0%)	6 (37.5%)	$\chi^2 = 38.216, df = 10, p = 0.000$
	Farmer	86 (19.7%)	183 (42.0%)	167 (38.3%)	
	Government staff	11 (32.4%)	12 (35.3%)	11 (32.4%)	
	Homemaker	31 (31.0%)	46 (46.0%)	23 (23.0%)	
	Labour	57 (32.8%)	49 (28.2%)	68 (39.1%)	
	Students	31 (28.7%)	56 (51.9%)	21 (19.4%)	
Proximity to the LI	0–300 m	95 (21.4%)	184 (41.5%)	164 (37.0%)	$\chi^2 = 10.038, df = 4, p = 0.040$
	301–600 m	122 (29.5%)	164 (39.7%)	127 (30.8%)	
	601–900 m	1 (8.3%)	6 (50.0%)	5 (41.7%)	
Years of living in the locality	0–30	65 (19.0%)	53 (15.5%)	225 (65.6%)	$\chi^2 = 8.228, df = 4, p = 0.084$
	31–60	102 (21.4%)	57 (12.0%)	317 (66.6%)	
	61–90	13 (26.5%)	1 (2%)	35 (71.4%)	

Table 4. Multinomial logistic regression results for people's perception on the impact of LI on avifauna.

Dependent variable	Negative (Odds Ratio)	Positive (Odds Ratio)
Age (31–45)	-0.636* (-0.334)	-0.495 (-0.304)
Gender (Male)	-0.4 (-0.306)	-0.544* (-0.288)
Non-tribe	1.212*** (-0.198)	0.858*** (-0.176)
Education (High school)	-0.799* (-0.446)	0.334 (-0.51)
Education (Graduate and above)	-1.163** (-0.47)	0.03 (-0.524)
Occupation (labour)	1.551* (-0.834)	0.725 (-0.591)
Proximity to the LI (0–300 m)	11.306*** (-0.385)	-0.359 (-1.317)
Proximity to the LI (301–600 m)	11.515*** (-0.384)	-0.599 (-1.319)
Proximity to the LI (601–900 m)	10.296*** (-0.882)	-0.493 (-1.454)
Years of living in the locality (31–60)	-0.493* (-0.267)	-0.295 (-0.235)
Years of living in the locality (61–90)	0.452 (-0.51)	-1.377** (-0.6)
Constant	-12.041*** (-0.794)	0.195 (-1.557)

AIC (Akaike information criterion) value—1,786.93 | *—p < 0.1 | **—p < 0.05 | ***—p < 0.01.

DISCUSSION

This study reveals the multifaceted impacts of LI on avifauna, with respondents expressing mixed but predominantly neutral to negative perceptions. Key concerns include bird mortality from collisions and electrocutions, consistent with earlier studies (Bevanger 1998; Raman 2011; Loss et al. 2014; Serratosa et al. 2024). Environmentally conscious respondents emphasize the need for ecological integration in infrastructure planning (Kaltenborn & Bjerke 2002). Socio-demographic factors significantly influence perceptions. Younger individuals tend to be neutral, likely due to limited experience (Milfont et al. 2010), while tribal affiliation correlates with more neutral or positive views, reflecting cultural influences (Shelley et al. 2011; Bain 2017). Higher education corresponds to fewer negative perceptions, highlighting education's role in environmental awareness (Harris et al. 2016). Proximity to LI and occupation also affect attitudes, with those living closer and in labour-intensive jobs showing more negativity (Batel et al. 2015).

Multinomial logistic regression confirms that proximity to the LI had a very strong and significant association with negative responses across all distance categories. This indicates that individuals residing closer to the LI were substantially more likely to report negative responses, likely reflecting direct exposure to environmental, social, or economic externalities, and this supports the prior findings of spatial proximity to infrastructure often intensifying perceptions of risk (Dear 1992; Devine-Wright & Batel 2013). Non-tribal respondents showed higher odds of both negative and positive responses, suggesting greater polarization and engagement within this group. This contrasts with tribal populations, who may be structurally marginalized or less empowered to express dissent—a pattern noted in participatory governance literature (Cornwall 2008). Lower education increases the odds of negative perceptions, whereas both high school and graduate-level education significantly reduce the likelihood of negative responses. This finding may reflect greater resilience, access to information, or broader worldview among more educated individuals, allowing them to contextualize or mitigate concerns (Dietz et al. 2007). Similarly, long-term residents showed more positive views, indicating perceptual shifts linked to socioeconomic change (Manfredo et al. 2009; George et al. 2016). Local ecological knowledge accrued through experience remains vital for conservation (Ruan et al. 2022). Integrating avian conservation into LI planning supports critical ecosystem services like pollination, seed dispersal, pest control, enhancing biodiversity, ecosystem resilience, and community well-being.

CONCLUSION

This study reveals varied community perceptions on the impacts of LI on birds. Many of the respondents recognized negative effects like electrocution and collisions, but neutral views were common, indicating gaps in awareness and the influence of multiple socio-demographic factors. Perceptions varied by age, education, culture, occupation, and proximity to LI. Younger and tribal individuals tend to be more neutral in their perception of impacts, while uneducated and non-tribal respondents are likely to perceive more negative impacts. Those living closer to LI show greater concern about the impacts, whereas long-term residents are relatively less concerned, possibly suggesting shifting attitudes over time, and acclimatization.

These perception patterns do not necessarily reflect

the full ecological impacts, as several bird groups—particularly raptors, hornbills, storks, and owls—are known from existing literature to be highly vulnerable to electrocution and collision. Strengthening environmental awareness among local communities, especially in areas undergoing rapid infrastructure expansion, will help bridge these gaps. The prevalence of neutral views points to a need for improved environmental education and awareness. Measures such as insulating power lines, installing bird diverters, and maintaining habitat buffers can substantially reduce risks. Incorporating bird conservation concerns into infrastructure development and involving local communities are essential to harmonize development with biodiversity conservation and overall ecosystem health.

REFERENCES

Ashwin, C.P., P.J. Clince & P.R. Arun (2023). Impact of linear infrastructure intrusions on avifauna: a review. *Bulletin of the Iraq Natural History Museum* 17(3): 481–498. <https://doi.org/10.26842/binhm.7.2023.17.3.0481>

Bain, W.K. (2017). Conservation of environment through traditional knowledge and wisdom with special reference to beliefs and practices in tribal India: an overview. *Heritage: Journal of Multidisciplinary Studies in Archaeology* 5: 224–243.

Batel, S., P. Devine-Wright, L. Wold, H. Egeland, G. Jacobsen & O. Aas (2015). The role of (de-) essentialisation within siting conflicts: an interdisciplinary approach. *Journal of Environmental Psychology* 44: 149–159. <https://doi.org/10.1016/j.jenvp.2015.10.004>

Bennett, N.J. (2016). Using perceptions as evidence to improve conservation and environmental management. *Conservation Biology* 30(3): 582–592. <https://doi.org/10.1111/cobi.12681>

Berkes, F., J. Colding & C. Folke (2000). Rediscovery of traditional ecological knowledge as adaptive management. *Ecological Applications* 10(5): 1251–1262. [https://doi.org/10.1890/1051-0761\(2000\)010\[1251:ROTEKA\]2.0.CO;2](https://doi.org/10.1890/1051-0761(2000)010[1251:ROTEKA]2.0.CO;2)

Bevanger, K. (1998). Biological and conservation aspects of bird mortality caused by electricity power lines: a review. *Biological Conservation* 86(1): 67–76. [https://doi.org/10.1016/S0006-3207\(97\)00176-6](https://doi.org/10.1016/S0006-3207(97)00176-6)

Byju, H., N. Raveendran & A.J. Mathiyazhagan (2023). Powerline pylons: an unusual nesting success of White-bellied Sea-Eagle *Haliaeetus leucogaster* (Gmelin, 1788) (Aves: Accipitridae) from Ramanathapuram, southeastern coast of India. *Journal of Threatened Taxa* 15(7): 23610–23614. <https://doi.org/10.11609/jott.8460.15.7.23610-23614>

Cailly-Arnulphi, V.B., S.A. Lambertucci & C.E. Borghi (2017). Education can improve the negative perception of a threatened long-lived scavenging bird, the Andean condor. *PLoS One* 12(9): e0185278. <https://doi.org/10.1371/journal.pone.0185278>

Champness, B.S., J.A. Fitzsimons, D. Kendal & G.C. Palmer (2023). Perceptions of birds by urban residents in an Australian regional city and implications for conservation. *Birds* 4(3): 262–276. <https://doi.org/10.3390/birds4030022>

Chin, Y.S.J., L. De Pretto, V. Thuppil & M.J. Ashfold (2019). Public awareness and support for environmental protection—A focus on air pollution in peninsular Malaysia. *PLoS One* 14(3): e0212206. <https://doi.org/10.1371/journal.pone.0212206>

Clark, L. (2009). *IDRISI Taiga*. Clark University, Worcester, MA, USA.

Cornwall, A. (2008). Unpacking 'Participation': models, meanings and

practices. *Community Development Journal* 43(3): 269–283.

Darawsheh, W. (2020). An investigation of public perception and attitudes towards disability in Jordan. *International Journal of Disability, Development and Education* 69: 1–20. <https://doi.org/10.1080/1034912X.2020.1727418>

De Jonge, M.M.J., J. Gallego-Zamorano, M.A.J. Huijbregts, A.M. Schipper & A. Benítez-López (2022). The impacts of linear infrastructure on terrestrial vertebrate populations: a trait-based approach. *Global Change Biology* 28(24): 7217–7233. <https://doi.org/10.1111/gcb.16450>

Dear, M. (1992). Understanding and overcoming the NIMBY syndrome. *Journal of the American Planning Association* 58(3): 288–300. <https://doi.org/10.1080/01944369208975808>

Devine-Wright, P. & S. Batel (2013). Explaining public preferences for high voltage pylon designs: An empirical study of perceived fit in a rural landscape. *Land Use Policy* 31: 640–649. <https://doi.org/10.1016/j.landusepol.2012.09.011>

Dietz, T., A. Dan & R. Shwom (2007). Support for climate change policy: social psychological and social structural influences. *Rural Sociology* 72(2): 185–214. <https://doi.org/10.1526/003601107781170026>

Dixit, S., P. Shrivastava, J.J. Sequeira, M.S. Mustak, M. Rana, P. Kushwaha & G. Chaubey (2024). The maternal genetic history of tribal populations of Chhattisgarh, India. *Mitochondrion* 79: 101970. <https://www.sciencedirect.com/science/article/abs/pii/S1567724924001284>

Forman, R.T. & L.E. Alexander (1998). Roads and their major ecological effects. *Annual Review of Ecology and Systematics* 207–C2. <https://doi.org/10.1146/annurev.ecolsys.29.1.207>

Gajera, N.B., A.K. Roy-Mahato & V.V. Kumar (2013). Status, distribution, and diversity of birds in mining environment of Kachchh, Gujarat. *International Journal of Biodiversity* 2013: 1–11. <https://doi.org/10.1155/2013/471618>

Geist, H.J. & E.F. Lambin (2002). Proximate causes and underlying driving forces of tropical deforestation: Tropical forests are disappearing as the result of many pressures, both local and regional, acting in various combinations in different geographical locations. *BioScience* 52(2): 143–150. [https://doi.org/10.1641/0006-3568\(2002\)052\[0143:PCAUDF\]2.0.CO;2](https://doi.org/10.1641/0006-3568(2002)052[0143:PCAUDF]2.0.CO;2)

Geneletti, D. (2004). Using spatial indicators and value functions to assess ecosystem fragmentation caused by linear infrastructures. *International Journal of Applied Earth Observation and Geoinformation* 5(1): 1–15. <https://doi.org/10.1016/j.jag.2003.08.004>

George, K.A., K.M. Slagle, R.S. Wilson, S.J. Moeller & J.T. Bruskotter (2016). Changes in attitudes toward animals in the United States from 1978 to 2014. *Biological Conservation* 201: 237–242. <https://doi.org/10.1016/j.biocon.2016.07.013>

Gubbi, S. (2006). Tiger habitats and integrated conservation and development projects: a case study from Periyar Tiger Reserve, India. Submitted in partial fulfilment of the requirement for the degree of Master of Science in Conservation Biology, Durrell Institute for Conservation and Ecology, University of Kent, 97 pp.

Harris, E., E. De Crom & A. Wilson (2016). Pigeons and people: mortal enemies or lifelong companions? A case study on staff perceptions of the pigeons on the University of South Africa, Muckleneuk campus. *Journal of Public Affairs* 16(4): 331–340. <https://doi.org/10.1002/PA.1593>

Huntington, H.P. (2011). The local perspective. *Nature* 478(7368): 182–183. <https://doi.org/10.1038/478182a>

Kaczensky, P., M. Blazic & H. Gossow (2004). Public attitudes towards brown bears (*Ursus arctos*) in Slovenia. *Biological Conservation* 118(5): 661–674. <https://doi.org/10.1016/j.biocon.2003.10.015>

Kaltenborn, B.P. & T. Bjerke (2002). Associations between environmental value orientations and landscape preferences. *Landscape and Urban Planning* 59(1): 1–11. [https://doi.org/10.1016/S0169-2046\(01\)00243-2](https://doi.org/10.1016/S0169-2046(01)00243-2)

Laurance, W.F., G.R. Clements, S. Sloan, C.S. O'Connell, N.D. Mueller, M. Goosem & A. Balmford (2014). A global strategy for road building. *Nature* 513(7517): 229–232. <https://doi.org/10.1038/nature13717>

Loss, S.R., T. Will & P.P. Marra (2014). Refining estimates of bird collision and electrocution mortality at power lines in the United States. *PLoS One* 9(7): e101565. <https://doi.org/10.1371/journal.pone.0101565>

Manfredo, M.J., T.L. Teel & K.L. Henry (2009). Linking society and environment: a multilevel model of shifting wildlife value orientations in the western United States. *Social Science Quarterly* 90(2): 407–427. <https://doi.org/10.1111/j.1540-6237.2009.00624.x>

Manigandan, S., P. Kannan, H. Byju, S. Bharathidasan, C. Thamby & B. Ramakrishnan (2022). Death of a Himalayan Vulture in South India highlights the potential threat of power infrastructure. *Vulture News* 80(1): 20–22. <https://doi.org/10.4314/vulnew.v80i1.3>

Manigandan, S., H. Byju & P. Kannan (2024). Harmonizing ecology and society: an integrated analysis of vulture conservation in the Nilgiri Biosphere Reserve, India. *Journal of Threatened Taxa* 16(6): 25330–25344. <https://doi.org/10.11609/jott.8915.16.6.25330-25344>

Milfont, T.L., J. Duckitt & C. Wagner (2010). A cross-cultural test of the value–attitude–behavior hierarchy. *Journal of Applied Social Psychology* 40(11): 2791–2813. <https://doi.org/10.1111/j.1559-1816.2010.00681.x>

Naha, D., Y.V. Jhala, Q. Qureshi, M. Roy & K. Sankar (2014). Socio-economic status and perception of fishermen towards resolving human-tiger conflict around Sundarban Tiger Reserve, India. *Scientific Transactions in Environment and Technovation* 8(2): 84–91. Available at: <https://stetjournals.com/index.php/announce/viewarticle/270>

Nayak, R., K.K. Karanth, T. Dutta, R. Defries, K.U. Karanth & S. Vaidyanathan (2020). Bits and pieces: Forest fragmentation by linear intrusions in India. *Land Use Policy* 99: 104619. <https://doi.org/10.1016/j.landusepol.2020.104619>

Patton, M.Q. (2002). Two decades of developments in qualitative inquiry: a personal, experiential perspective. *Qualitative Social Work* 1(3): 261–283. <https://doi.org/10.1177/1473325002001003363>

Raman, T.S. (2011). Framing ecologically sound policy on linear intrusions affecting wildlife habitats. *Nature Conservation Foundation*, Mysuru, India, 51 pp.

Ruan, Y., Y. Li, Y. Xia, T. Yu & C. Dai (2022). Students' knowledge of and conservation attitude toward the black-necked crane (*Grus nigricollis*) in Guizhou, China: insights for conservation. *Journal of Ethnobiology and Ethnomedicine* 18(1): 37. <https://doi.org/10.1186/s13002-022-00536-6>

Serratosa, J., S. Oppel, S. Rotics, A. Santangeli, S.H. Butchart, L.S. Cano-Alonso, J.L. Tellería, R. Kemp, A. Nicholas, A. Kalvāns & A. Galarza (2024). Tracking data highlight the importance of human-induced mortality for large migratory birds at a flyway scale. *Biological Conservation* 293: 110525. <https://doi.org/10.1016/j.biocon.2024.110525>

Shelley, V., A. Treves & L. Naughton (2011). Attitudes to wolves and wolf policy among Ojibwe tribal members and non-tribal residents of Wisconsin's wolf range. *Human Dimensions of Wildlife* 16(6): 397–413. <https://doi.org/10.1080/10871209.2011.606521>

Umaña-Hermosilla, B., H. de la Fuente-Mella, C. Elórtegui-Gómez & M. Fonseca-Fuentes (2020). Multinomial logistic regression to estimate and predict the perceptions of individuals and companies in the face of the covid-19 pandemic in the Ñuble region, Chile. *Sustainability* 12(22): 9553. <https://doi.org/10.3390/su12229553>

Van der Grift, E.A., R. van der Ree & J.A. Jaeger (2015). Guidelines for evaluating the effectiveness of road mitigation measures, pp. 129–137. In: van Der Ree, R., D.J. Smith & C. Grilo (eds.). *Handbook of Road Ecology*. John Wiley & Sons, Ltd., Chichester, 560 pp. <https://doi.org/10.1002/9781118568170.ch16>

Viklund, M. (2004). Energy policy options—from the perspective of public attitudes and risk perceptions. *Energy Policy* 32(10): 1159–1171. [https://doi.org/10.1016/S0301-4215\(03\)00079-X](https://doi.org/10.1016/S0301-4215(03)00079-X)

Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India
Dr. John Noyes, Natural History Museum, London, UK
Dr. Albert G. Orr, Griffith University, Nathan, Australia
Dr. Sameer Padhye, Katholieke Universiteit Leuven, Belgium
Dr. Nancy van der Poorten, Toronto, Canada
Dr. Karen Schnabel, NIWA, Wellington, New Zealand
Dr. R.M. Sharma, (Retd.) Scientist, Zoological Survey of India, Pune, India
Dr. Manju Siliwal, WILD, Coimbatore, Tamil Nadu, India
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. K.A. Subramanian, Zoological Survey of India, New Alipore, Kolkata, India
Dr. P.M. Sureshan, Zoological Survey of India, Kozhikode, Kerala, India
Dr. R. Varatharajan, Manipur University, Imphal, Manipur, India
Dr. Eduard Vives, Museu de Ciències Naturals de Barcelona, Terrassa, Spain
Dr. James Young, Hong Kong Lepidopterists' Society, Hong Kong
Dr. R. Sundararaj, Institute of Wood Science & Technology, Bengaluru, India
Dr. M. Nithyanandan, Environmental Department, La Al Kuwait Real Estate. Co. K.S.C., Kuwait
Dr. Himender Bharti, Punjabi University, Punjab, India
Mr. Purnendu Roy, London, UK
Mr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Sanjay Sondhi, TITLI TRUST, Kalpavriksh, Dehradun, India
Dr. Nguyen Thi Phuong Lien, Vietnam Academy of Science and Technology, Hanoi, Vietnam
Dr. Nitin Kulkarni, Tropical Research Institute, Jabalpur, India
Dr. Robin Wen Jiang Ngiam, National Parks Board, Singapore
Dr. Lional Monod, Natural History Museum of Geneva, Genève, Switzerland.
Dr. Asheesh Shivam, Nehru Gram Bharti University, Allahabad, India
Dr. Rosana Moreira da Rocha, Universidade Federal do Paraná, Curitiba, Brasil
Dr. Kurt R. Arnold, North Dakota State University, Saxony, Germany
Dr. James M. Carpenter, American Museum of Natural History, New York, USA
Dr. David M. Claborn, Missouri State University, Springfield, USA
Dr. Karen Schnabel, Marine Biologist, Wellington, New Zealand
Dr. Amazonas Chagas Júnior, Universidade Federal de Mato Grosso, Cuiabá, Brasil
Mr. Monsoon Jyoti Gogoi, Assam University, Silchar, Assam, India
Dr. Heo Chong Chin, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
Dr. R.J. Shiel, University of Adelaide, SA 5005, Australia
Dr. Siddharth Kulkarni, The George Washington University, Washington, USA
Dr. Priyadarshan Dharma Rajan, ATREE, Bengaluru, India
Dr. Phil Alderslade, CSIRO Marine And Atmospheric Research, Hobart, Australia
Dr. John E.N. Veron, Coral Reef Research, Townsville, Australia
Dr. Daniel Whitmore, State Museum of Natural History Stuttgart, Rosenstein, Germany.
Dr. Yu-Feng Hsu, National Taiwan Normal University, Taipei City, Taiwan
Dr. Keith V. Wolfe, Antioch, California, USA
Dr. Siddharth Kulkarni, The Hormiga Lab, The George Washington University, Washington, D.C., USA
Dr. Tomas Ditrich, Faculty of Education, University of South Bohemia in Ceske Budejovice, Czech Republic
Dr. Mihaly Foldvari, Natural History Museum, University of Oslo, Norway
Dr. V.P. Uniyal, Wildlife Institute of India, Dehradun, Uttarakhand 248001, India
Dr. John T.D. Caleb, Zoological Survey of India, Kolkata, West Bengal, India
Dr. Priyadarshan Dharma Rajan, Ashoka Trust for Research in Ecology and the Environment (ATREE), Royal Enclave, Bangalore, Karnataka, India

Fishes

Dr. Topiltzin Contreras MacBeath, Universidad Autónoma del estado de Morelos, México
Dr. Heok Hee Ng, National University of Singapore, Science Drive, Singapore
Dr. Rajeev Raghavan, St. Albert's College, Kochi, Kerala, India
Dr. Robert D. Sluka, Chiltern Gateway Project, A Rocha UK, Southall, Middlesex, UK
Dr. E. Vivekanandan, Central Marine Fisheries Research Institute, Chennai, India
Dr. Davor Zanella, University of Zagreb, Zagreb, Croatia
Dr. A. Biju Kumar, University of Kerala, Thiruvananthapuram, Kerala, India
Dr. Akhilesh KV, ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Mumbai, Maharashtra, India
Dr. J.A. Johnson, Wildlife Institute of India, Dehradun, Uttarakhand, India
Dr. R. Ravinesh, Gujarat Institute of Desert Ecology, Gujarat, India

Amphibians

Dr. Sushil K. Dutta, Indian Institute of Science, Bengaluru, Karnataka, India
Dr. Annemarie Ohler, Muséum national d'Histoire naturelle, Paris, France

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pritpal S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekher U. Rironker, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Kalinga Foundation, Agumbe, India.
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

Journal of Threatened Taxa is indexed/abstracted in Bibliography of Systematic Mycology, Biological Abstracts, BIOSIS Previews, CAB Abstracts, EBSCO, Google Scholar, Index Copernicus, Index Fungorum, JournalSeek, National Academy of Agricultural Sciences, NewJour, OCLC WorldCat, SCOPUS, Stanford University Libraries, Virtual Library of Biology, Zoological Records.

NAAS rating (India) 5.64

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Mr. H. Biju, Coimbatore, Tamil Nadu, India
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duckworth, IUCN SSC, Bath, UK
Dr. Rajah Jayopal, SACON, Coimbatore, Tamil Nadu, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittoor Dt., Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Mr. J. Praveen, Bengaluru, India
Dr. C. Srinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobaatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, Wageningen, The Netherlands
Dr. Carol Inskip, Bishop Auckland Co., Durham, UK
Dr. Tim Inskip, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National College, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Lelej, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santiago dos Santos, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Connette, Smithsonian Institution, Royal, VA, USA
Dr. P.A. Azeez, Coimbatore, Tamil Nadu, India

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Mallon, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACON, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. P.O. Nameer, Kerala Agricultural University, Thrissur, Kerala, India
Dr. Ian Redmond, UNEP Convention on Migratory Species, Lansdown, UK
Dr. Heidi S. Riddle, Riddle's Elephant and Wildlife Sanctuary, Arkansas, USA
Dr. Karin Schwartz, George Mason University, Fairfax, Virginia.
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Mewa Singh, Mysore University, Mysore, India
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnavalli N. Kumar, SACON, Anaikatty P.O., Coimbatore, Tamil Nadu, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Spartaco Gippoliti, Socio Onorario Società Italiana per la Storia della Fauna "Giuseppe Altobello", Rome, Italy
Dr. Justus Joshua, Green Future Foundation, Tiruchirappalli, Tamil Nadu, India
Dr. H. Raghuram, Sri S. Ramasamy Naidu Memorial College, Virudhunagar, Tamil Nadu, India
Dr. Paul Bates, Harison Institute, Kent, UK
Dr. Jim Sanderson, Small Wild Cat Conservation Foundation, Hartford, USA
Dr. Dan Challender, University of Kent, Canterbury, UK
Dr. David Mallon, Manchester Metropolitan University, Derbyshire, UK
Dr. Brian L. Cypher, California State University-Stanislaus, Bakersfield, CA
Dr. S.S. Talmale, Zoological Survey of India, Pune, Maharashtra, India
Prof. Karan Bahadur Shah, Budhanilakantha Municipality, Kathmandu, Nepal
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraja, Indonesia
Dr. Hemanta Kafley, Wildlife Sciences, Tarleton State University, Texas, USA

Other Disciplines

Dr. Aniruddha Belsare, Columbia MO 65203, USA (Veterinary)
Dr. Manda S. Paingankar, University of Pune, Pune, Maharashtra, India (Molecular)
Dr. Jack Tordoff, Critical Ecosystem Partnership Fund, Arlington, USA (Communities)
Dr. Ulrike Streicher, University of Oregon, Eugene, USA (Veterinary)
Dr. Hari Balasubramanian, EcoAdvisors, Nova Scotia, Canada (Communities)
Dr. Rayanna Hellern Santos Bezerra, Universidade Federal de Sergipe, São Cristóvão, Brazil
Dr. Jamie R. Wood, Landcare Research, Canterbury, New Zealand
Dr. Wendy Collinson-Jonker, Endangered Wildlife Trust, Gauteng, South Africa
Dr. Rajeshkumar G. Jani, Anand Agricultural University, Anand, Gujarat, India
Dr. O.N. Tiwari, Senior Scientist, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
Dr. L.D. Singla, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
Dr. Rupika S. Rajakaruna, University of Peradeniya, Peradeniya, Sri Lanka
Dr. Bahar Baviskar, Wild-CER, Nagpur, Maharashtra 440013, India

Reviewers 2021–2023

Due to paucity of space, the list of reviewers for 2021–2023 is available online.

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.

Print copies of the Journal are available at cost. Write to:
The Managing Editor, JoTT,
c/o Wildlife Information Liaison Development Society,
3A2 Varadarajulu Nagar, FCI Road, Ganapathy, Coimbatore,
Tamil Nadu 641006, India
ravi@threatenedtaxa.org & ravi@zooreach.org

Articles

Biological validation of fecal glucocorticoid and triiodothyronine measures in free-ranging Golden-headed Lion Tamarins (Kühl, 1820), (Mammalia: Primates: Callitrichidae: *Leontopithecus chrysomelas*): effects of the stress of capture and body condition

– Roberto Fiorini-Torrico, Leonardo de Carvalho Oliveira, Damián Escrivano, José Joaquín Cerón & Kristel Myriam de Vleeschouwer, Pp. 28151–28166

Tricho-taxonomic prey identifications from faeces of Indian Rock Python *Python molurus* (Linnaeus, 1758) (Reptilia: Squamata: Pythonidae) in Moyar River Valley, Tamil Nadu, India

– Jyoti Nagarkoti, C.S. Vishnu, Chinnasamy Ramesh & Archana Bahuguna, Pp. 28167–28173

Field observations and citizen science reveal ecological insights into rare and threatened parrots in the Philippines

– Vince Angelo G. Gicaraya & Carmela P. Espa  ola, Pp. 28174–28185

People's perceptions on the impacts of select linear infrastructure projects on avifauna in Chhattisgarh, India

– C.P. Ashwin, J.M. Alby & P.R. Arun, Pp. 28186–28193

Communications

Habitat associations and feeding ecology of adult Tamdil Leaf-litter Frog *Leptobrachella tamdil* (Amphibia: Megophryidae) from the type locality – the Tamdil wetland, Mizoram, India

– Malsawmdawngiana, Esther Lalhminglani, Samuel Lalronunga, Lalrinmawia & Lalnuntluanga, Pp. 28194–28200

An inventory of hymenopteran insects from division Jammu of Jammu & Kashmir, India

– Charul, Anjoo Dhar, Shash Pal, Shivalika Loona, Neha Choudhary, Sourabh Sharma & Rakesh Kumar Panjaliya, Pp. 28201–28214

Four new additions to the angiosperm flora of Manipur, India

– Bimol Kumar Singh Sadokpam, Sanatombi Devi Yumkham, Dhaneshwor Waikhom & Sorokhaibam Sureshkumar Singh, Pp. 28215–28222

Review

Historical records of the Jaguar *Panthera onca* (Linnaeus, 1758) (Mammalia: Carnivora: Felidae) in the state of Santa Catarina, Brazil

– Jackson F  bio Preuss & Pedro Henrique Amancio Padilha, Pp. 28223–28234

Short Communications

First photographic record of Red-naped Ibis *Pseudibis papillosa* Temminck, 1824 in Sikkim Himalaya, India

– Laxmi Rai, Kritan Rai & Bijoy Chhetri, Pp. 28235–28238

New distribution record of *Sonoita lightfooti* G.W. Peckham & E.G. Peckham, 1903 (Araneae: Salticidae) from Gujarat, India

– Subhash I. Parmar, Pranav J. Pandya & Vivek U. Chauhan, Pp. 28239–28241

Garcinia pedunculata (Clusiaceae), a new record for Bhutan and its ethnopharmacological potential

– Jigme Wangchuk, Ugyen Dorji, Sherab Dorji, Yograj Chhetri & Tsethup Tshering, Pp. 28242–28245

Notes

First record of Indian Fox *Vulpes bengalensis* in Dang, Gujarat, India

– Aadil Kazi, Mohmad Navaz Dahya, Rohit Chaudhary & Pravin Chaudhari, Pp. 28246–28248

First record with photographic evidence of Dhole *Cuon alpinus* (Pallas, 1811) from Panshet, Pune, Maharashtra, India

– Sonali Shinde & Chinmay Sonawane, Pp. 28249–28251

First photographic evidence of Spot-bellied Eagle Owl *Ketupa nipalensis* (Strigiformes: Strigidae) in Palamau Tiger Reserve, Jharkhand, India

– Arshyaan Shahid, Shahzada Iqbal & Orus Ilyas, Pp. 28252–28254

Sighting of Sooty Gull *Ichthyaetus hemprichii* from the salt pans of Nagapattinam Coast, Tamil Nadu, India

– S. Babu, Anand Shibu & M. Kishore, Pp. 28255–28258

First record of *Colytus bilineatus* Thorell, 1891 (Arachnida: Araneae: Salticidae) from India

– Monica Chetry, John T.D. Caleb & Parthankar Choudhury, Pp. 28259–28262

Publisher & Host

Threatened Taxa