Food availability and food selectivity of Sri Lanka Grey Hornbill Ocyceros gingalensis Shaw, 1811 in Mihintale Sanctuary, Sri Lanka

Main Article Content

Iresha Wijerathne
Pavithra Panduwawala
Sriyani Wickramasinghe
https://orcid.org/0000-0002-3193-3386

Abstract

This study was focused on explaining food selectivity in endemic Sri Lanka Grey Hornbill Ocyceros gingalensis to fill the gaps in the behavioral ecology of this endemic species. The study was conducted within Mihintale Sanctuary for five months from December 2015 to April 2016. Ringed hornbills were used to monitor the number of food items that were consumed from within the Food Abundance Index (FAI) and quantify the distribution and availability of resources to examine the potential of fruit selectivity. Thirteen fruiting plant families were recorded as preferred food. Food consumption and FAI values are not significantly correlated (r = 0.60, p = 0.285). The dietary composition increased in the breeding season due to a higher requirement for nutrients by the nestlings. Nutrient analysis results revealed that moisture (H = 7.50, p = 0.006), fiber (H = 6.53, p = 0.011), and ash (H = 6.07, p = 0.013) components were significant between eaten and non-eaten fruits. The amount of all the nutrients available in the fruits as well as FAI does not directly affect the fruit selectivity of the Sri Lanka Grey Hornbill in the Mihintale Sanctuary. This fruit selection and the seed dispersal ability of the Sri Lanka Grey Hornbill contributes to maintaining the ecosystem diversity and forest regeneration, especially in the Dry Zone in Sri Lanka. 

Article Details

Section
Communications

References

Aizen, M.A., L. Ashworth & L. Galetto (2002). Reproductive success in fragmented habitats: do compatibility systems and pollination specialization matter? Journal of Vegetation Science 6: 885–892.

Alahacoon, N., M. Edirisinghe & M. Ranagalage (2021). Satellite-based meteorological and agricultural drought monitoring for agricultural sustainability in Sri Lanka. Sustainability (Switzerland) 13(6): 3427. https://doi.org/10.3390/su13063427

Anderson, D.P., E.V. Nordheim, T.C. Moermond, Z.B.G. Bi & C. Boesch (2005). Factors influencing tree phenology in Taï National Park, Côte d’Ivoire. Biotropica 37(4): 631–640. https://doi.org/10.1111/j.1744-7429.2005.00080.x

Armesto, J.J. & R. Rozzi (1989). Seed Dispersal Syndromes in the Rain Forest of Chiloe: Evidence for the Importance of Biotic Dispersal in a Temperate Rain Forest. Journal of Biogeography 16(3): 219. https://doi.org/10.2307/2845258

Bascompte, J. & P. Jordano (2007). Plant-animal mutualistic networks: The architecture of biodiversity. Annual Review of Ecology, Evolution, and Systematics 38: 567–593. https://doi.org/10.1146/annurev.ecolsys.38.091206.095818

Carmi, N., B. Pinshow, W.P. Porter & J. Iaeger (1992). Water and Energy Limitations on Flight Duration in Small Migrating Birds. The Auk 109(2): 268–276. https://doi.org/10.2307/4088195

Coelho, A.M., C.A. Bramblett, L.B. Quick & S.S. Bramblett (1976). Resource availability and population density in primates: A socio-bioenergetic analysis of the energy budgets of Guatemalan howler and spider monkeys. Primates 17(1): 63–80. https://doi.org/10.1007/BF02381567

Corlett, R.T. (2017). Frugivory and seed dispersal by vertebrates in tropical and subtropical Asia: An update. Global Ecology and Conservation 11: 1–22. https://doi.org/10.1016/j.gecco.2017.04.007

Cousens, R., C. Dytham & R. Law (2008). Dispersal in Plants. A population perspective. Oxford. online edn, Oxford Academic, 1 May 2008), https://doi.org/10.1093/acprof:oso/9780199299126.001.0001

Dunham, A.E., O.H. Razafindratsima, P. Rakotonirina & P.C. Wright (2018). Fruiting phenology is linked to rainfall variability in a tropical rain forest. Biotropica 50(3): 396–404. https://doi.org/10.1111/btp.12564

Gonzalez, J.C.T., B.C. Sheldon, N.J. Collar & J.A. Tobias (2013). A comprehensive molecular phylogeny for the hornbills (Aves: Bucerotidae). Molecular Phylogenetics and Evolution 67(2): 468–483. https://doi.org/10.1016/j.ympev.2013.02.012

Henry, H. & W.G.M. Thilo (1998). A Guide to the Birds of Sri Lanka. Oxford University Press, 576 pp.

International Union for Conservation of Nature IUCN (2000). The 1999 List of threatened fauna and flora of Sri Lanka. In: IUCN Sri Lanka and the Ministry of Environment and Natural Resources. IUCN Sri Lanka, Colombo, 114 pp.

Janson, C.H., E.W. Stiles & D.W. White (1986). Selection on plant fruiting traits by brown capuchin monkeys: a multivariate approach. In: Janson, C.H., E.W. Stiles & Douglas W. White (ds.). Frugivores and Seed Dispersal - Vol. 15. https://doi.org/10.1007/978-94-009-4812-9_9

Jordano, P. (1987). Avian fruit removal: effects of fruit variation, crop size and insect damage. Ecology 68(6) 1711–1723.

Kirk, P.L. (1950). Kjeldahl Method for Total Nitrogen. Analytical Chemistry 22(2): 354–358. https://doi.org/10.1021/ac60038a038

Kitamura, S. (2011). Frugivory and seed dispersal by hornbills (Bucerotidae) in tropical forests. Acta Oecologica 37(6): 531–541. https://doi.org/10.1016/j.actao.2011.01.015

Kotagama, S.W., C. Kalathota & C. Kumara (2011). Distributional Status of Hornbills in Sri Lanka, 1993-2009. Raffles Bulletin of Zoology, Supplement 24: 77–83.

Krebs, C.J. (1973). Ecology: The Experimental Analysis of Distribution and Abundance BioScience 23(4): 694 pp. https://doi.org/10.2307/1296598

Kruskal, W.H. & W.A. Wallis (1952). Use of Ranks in One-Criterion Variance Analysis. Journal of the American Statistical Association 47(260): 583–621. https://doi.org/10.1080/01621459.1952.10483441

Lambert, F.R. & A.G. Marshall (1991). Keystone Characteristics of Bird-Dispersed Ficus in a Malaysian Lowland Rain Forest. The Journal of Ecology 79(3): 793. https://doi.org/10.2307/2260668

Lamperti, A.M., A.R. French, E.S. Dierenfeld,M.K. Fogiel, K.D. Whitney, D.J. Stauffer, K.M. Holbrook, B.D. Hardesty, C.J. Clark, J.R. Poulsen, B.C.Wang,T.B. Smith & V.T. Parker (2014). Diet selection is related to breeding status in two frugivorous hornbill species of Central Africa. Journal of Tropical Ecology 30(4): 273–290. https://doi.org/10.1017/S0266467414000236

Legge, W.V. (1880). A History of the Birds of Ceylon. Published by the author, 277 pp. https://doi.org/10.5962/bhl.title.127685

MacArthur, R.H. (1958). Population Ecology of some Wablers of Northeastern coniferous forests. Ecology 39(4): 599–619.

MOE (2012). The National Red List 2012 of Sri Lanka; Conservation Status of the Fauna and Flora. Ministry of Environment, Colombo, Sri Lanka. viii + 476 pp

Moran, C., C.P. Catterall & J. Kanowski (2009). Reduced dispersal of native plant species as a consequence of the reduced abundance of frugivore species in fragmented rainforest. Biological Conservation 142(3): 541–552. https://doi.org/10.1016/j.biocon.2008.11.006

Park , Y.W. (1996). Determination of moisture and ash content of food, Cooperative Agricultural Research Center Prairie View A & M Univer. June: 59–92.

Poonswad, P., N. Jirawatkavi & A. Tsuji (2004). Estimation of nutrients delivered to nest inmates by four sympatric species of hornbills in Khao Yai National Park, Thailand. Ornithological Science 3(2): 99–112. https://doi.org/10.2326/osj.3.99

Ranagalage, M., D.M.S.L.B. Dissanayake,Y. Murayama, X. Zhang, R.C. Estoque, E.N.C. Perera & T. Morimoto (2018). Quantifying surface urban heat island formation in the world heritage tropical mountain city of Sri Lanka. Canadian Historical Review 7(9): 341. https://doi.org/10.3390/ijgi7090341

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Simpson, M.J.A. & A.E. Simpson (1977). One-zero and scan methods for sampling behaviour. Animal Behaviour 25(PART 3): 726–731. https://doi.org/10.1016/0003-3472(77)90122-1

Smedes, F. & T.K. Thomasen (2003). Evaluation of the Bligh & Dyer LipidDetermination Method. Pollution Bulletin, 32(1): 1–8. https://pdf.sciencedirectassets.com/271825/1-s2.0-S0025326X00X00185/1-s2.0-0025326X96000793/main.pdf?X-Amz-Security-Token=AgoJb3JpZ2luX2VjEDEaCXVzLWVhc3QtMSJHMEUCIEIDRK4HgMWr99vk8KCxtRj9Pwzc0v6FMringmv4iVGaAiEA2Ngkj7SjH5G%2BUJCDGe5fWMyhY7wqgYAJAsDB67UMPTw

Snow, D.W. (1981). Tropical Frugivorous Birds and Their Food Plants: A World Survey. Biotropica 13(1): 1. https://doi.org/10.2307/2387865

Sourd, C. & A. Gautier-Hion (1986). Fruit Selection by a Forest Guenon. The Journal of Animal Ecology 55(1): 235. https://doi.org/10.2307/4704

Wickramasinghe, S., P.Panduwawala & I. Wijerathna (2018). Distribution and habitat ecology of Sri Lanka Grey Hornbill ( Ocycerous gingalensis ) in the Anuradhapura district North central province, Sri Lanka. Wildlanka 6(1): 1–7.

Wijerathne, I. & S. Wickramasinghe (2018). Behavioral Pattern of Endemic Sri Lanka Grey Hornbill (Ocyceros gingalensis) within the Breeding and Nonbreeding Seasons. International Journal of Biodiversity 1–7. https://doi.org/10.1155/2018/9509785

Wijerathne, I. & S. Wickramasinghe (2019). Nest cavity characteristics and nesting success of Sri Lanka Grey Hornbill ( Ocycerous gingalensis ) in Mihintale Sanctuary, Sri Lanka. NeBIO 10(2): 93–94.

Williams, R. D. & W.H. Olmsted (1935). A Biochemical Method for Determining Indigestible Residue (Crude Fiber) in Feces: Lignin, Cellulose, and Non-Watersoluble Hemicelluloses. Journal of Biological Chemistry 108(3): 653–666. https://doi.org/10.1016/s0021-9258(18)75257-5

Wimalasekara, C. & S. Wickramasinghe (2014). Species diversity and conservation of avifauna in three different habitat types within the Mihintale Sanctuary, Sri Lanka. Journal of Threatened Taxa 6(5): 5718–5725. https://doi.org/10.11609/jott.o3119.5718-25

Zach, R. (1979). Shell dropping: decision-making and optimal foraging in northwestern crows. Behaviour 68: 106–117