Molecular characterization of stinkhorn fungus Aseroë coccinea Imazeki et Yoshimi ex Kasuya 2007 (Basidiomycota: Agaricomycetes: Phallales) from India

Main Article Content

Vivek Bobade
https://orcid.org/0000-0001-7600-6378
Neelesh Dahanukar
http://orcid.org/0000-0001-7162-9023

Abstract

In this note we provide the first report of stinkhorn fungus Aseroë coccinea from northern Western Ghats of India and first report of this species from outside its type locality in Japan. In addition to the morphological characters, we also provide sequences for two molecular markers and provide a phylogenetic tree, which questions the generic position of the species. Our report highlights the need for more exploratory surveys for understanding diversity, distribution and taxonomy of Phallales and in general fungal diversity of India.

Article Details

How to Cite
[1]
Bobade, V. and Dahanukar, N. 2020. Molecular characterization of stinkhorn fungus Aseroë coccinea Imazeki et Yoshimi ex Kasuya 2007 (Basidiomycota: Agaricomycetes: Phallales) from India. Journal of Threatened Taxa. 12, 4 (Mar. 2020), 15530–15534. DOI:https://doi.org/10.11609/jott.5091.12.4.15530-15534.
Section
Notes
Author Biographies

Vivek Bobade, Department of Microbiology, Modern College of Arts, Science and Commerce, Shivajinagar, Pune, Maharashtra 411005, India.

Department of Microbiology, Modern College of Arts, Science and Commerce, Shivajinagar, Pune 411005, Maharashtra, India.

Neelesh Dahanukar, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, Maharashtra 411008, India.

INSPIRE Faculty Fellow

References

Berger, L., R. Speare, P. Daszak, D.E. Green, A.A. Cunningham, C.L. Goggin, R. Slocombe, M.A. Ragan, A.D. Hyatt, K.R. McDonald & H.B. Hines (1998). Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proceedings of the National Academy of Science 95: 9031–9036. https://doi.org/10.1073/pnas.95.15.9031 DOI: https://doi.org/10.1073/pnas.95.15.9031

Cabral, T.S., P. Marinho, B.T. Goto & I.G. Baseia (2012). Abrachium, a new genus in the Clathraceae, and Itajahya reassessed. Mycotaxon 119: 419–429. https://doi.org/10.5248/119.419 DOI: https://doi.org/10.5248/119.419

Dring, D.M. (1980). Contributions towards a rational arrangement of the Clathraceae. Kew Bulletin 35: 1–96. https://doi.org/10.2307/4117008 DOI: https://doi.org/10.2307/4117008

Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340 DOI: https://doi.org/10.1093/nar/gkh340

Gardes, M. & T.D. Bruns (1993). ITS primers with enhanced specificity for basidiomycetesâ€application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x DOI: https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

Gogoi, G. & V. Parkash (2015). Lysurus habungianus sp. nov. (Phallaceae)-A new stinkhorn fungus from India. Current Research in Environmental and Applied Mycology 5: 248–255. https://doi.org/10.5943/cream/5/3/7 DOI: https://doi.org/10.5943/cream/5/3/7

Gogoi, G. & V. Parkash (2014). Some new records of stinkhorns (Phallaceae) from Hollongapar Gibbon Wildlife Sanctuary, Assam, India. Journal of Mycology 490847: 1–8. http://dx.doi.org/10.1155/2014/490847 DOI: https://doi.org/10.1155/2014/490847

Hemmes, D.E. & D.E. Desjardin (2009). Stinkhorns of the Hawaiian Islands. Fungi 2: 8–10.

Hoang, D.T., O. Chernomor, A. von Haeseler, B.Q. Minh & L.S. Vinh (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522. https://doi.org/10.1093/molbev/msx281 DOI: https://doi.org/10.1093/molbev/msx281

Iyengar, M.O.P. & V. Krishnamurthy (1954). A note on Aseroe rubra (La Bill) Fries var. zeylanica (Berk.) Ed. Fischer from South India. Lloydia 17: 257–262.

Kalyaanamoorthy, S., B.Q. Minh, T.K.F. Wong, A. von Haeseler & L.S. Jermiin (2017). ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285 DOI: https://doi.org/10.1038/nmeth.4285

Kasuya, T. (2007). Validation of Aseroë coccinea (Phallales, Phallaceae). Mycoscience 48: 309–311. https://doi.org/10.1007/S10267-007-0370-8 DOI: https://doi.org/10.1007/S10267-007-0370-8

Kirk, P.M., P.F. Cannon, D.W. Minter & J.A. Stalpers (2008). Dictionary of the Fungi. 10th ed. CABI, Wallingford, UK, 784pp.

Kour, H., R. Yangdol, S. Kumar & Y.P. Sharma (2016). Three species of Phallus (Basidiomycota: Agaricomycetes: Phallaceae) from Jammu & Kashmir, India. Journal of Threatened Taxa 8: 8403–8409. http://dx.doi.org/10.11609/jott.2173.8.1.8403-8409 DOI: https://doi.org/10.11609/jott.2173.8.1.8403-8409

Kumar, S., G. Stecher & K. Tamura (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874. https://doi.org/10.1093/molbev/msw054 DOI: https://doi.org/10.1093/molbev/msw054

Mohanan, C. (2011a). Biodiversity of Terricolous and Lignicolous Macrofungi of the Western Ghats, Kerala. Final Technical Report: F. No. 23/15/2006–RE, Kerala Forest Research Institute, Kerala, 389pp.

Mohanan, C. (2011b). Macrofungi of Kerala. Kerala Forest Research Institute, Peechi, Kerala, India, 670pp.

Narasimhan, M.J. (1932). The Phalloideae of Mysore. Journal of Indian Botanical Society 11: 248–254.

Nguyen, L.-T., H.A. Schmidt, A. von Haeseler & B.Q. Minh (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. https://doi.org/10.1093/molbev/msu300 DOI: https://doi.org/10.1093/molbev/msu300

Pradhan, P., A.K. Dutta, S. Giri, N. Chakraborty, A. Roy & K. Acharya (2012). Phallales of West Bengal, India, I. Clathraceae: Aseroe and Clathrus. Science and Culture 78: 444–447.

Rambaut, A. (2009). FigTree, ver 1.4.3. Available online at: http://tree.bio.ed.ac.uk/software/figtree. Accessed on 1 January 2019.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6: 461–464.

Sursane, V., N.S. Sawant, S. Paripatyadar, K. Krutha, M.S. Paingankar, A.D. Padhye, D.B. Bastawade & N. Dahanukar (2017). First molecular phylogeny of scorpions of the family Buthidae from India. Mitochondrial DNA Part A 28: 606–611. https://doi.org/10.3109/24701394.2016.1149830 DOI: https://doi.org/10.3109/24701394.2016.1149830

Trierveiler-Pereira, L., R.M.B. da Silveira & K. Hosaka (2014). Multigene phylogeny of the Phallales (Phallomycetidae, Agaricomycetes) focusing on some previously unrepresented genera. Mycologia 106: 904–911. https://doi.org/10.3852/13-188 DOI: https://doi.org/10.3852/13-188

Trierveiler-Pereira, L., A.A. De Meijer, M.A. Reck, K. Hosaka & R.M.B. Da Silveira (2017). Phallus aureolatus (Phallaceae, Agaricomycetes), a new species from the Brazilian Atlantic Forest. Phytotaxa 327: 223–236. http://dx.doi.org/10.11646/phytotaxa.327.3.2 DOI: https://doi.org/10.11646/phytotaxa.327.3.2

Vasudeva, R.S. (1962). Fungi of India. Supplement 1. Indian Council of Agricultural Research, New Delhi, 206pp.

White, T.J., T. Bruns, S. Lee & J. Taylor (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315–322. In: Innis, M.A., D.H. Gelfand, J.J. Sninsky & T.J. White (eds.). PCR Protocols: A Guide to Methods and Applications, Academic Press, New York, 482pp.

Most read articles by the same author(s)

1 2 > >>