Paresis as a limiting factor in the reproductive efficiency of a nesting colony of *Lepidochelys olivacea* (Eschscholtz, 1829) in La Escobilla beach, Oaxaca, Mexico

Alejandra Buenrostro-Silva 1, Jesús García-Grajales 2, Petra Sánchez-Nava 3 & María de Lourdes Ruiz-Gómez 4

1, 2 Estudiante del Programa de Doctorado en Ciencias Agropecuarias y Recursos Naturales, Universidad Autónoma del Estado de México, El Cerrillo Piedra Blancas, Toluca 50295, Estado de México.

1 Universidad del Mar campus Puerto Escondido. Km. 2.5 carretera Federal Puerto Escondido-Sola de Vega 71980, San Pedro, Mixtepec, Oaxaca, Mexico.

3, 4 Facultad de Ciencias, Universidad Autónoma del Estado de México. El Cerrillo Piedra Blancas, Toluca 50295, Estado de México.

1 sba_1575@yahoo.com.mx, 2 archosaurio@yahoo.com.mx (corresponding author), 3 psn@uaemex.mx, 4 ruiz.gomez.maria@gmail.com

Abstract: Rear flippers are crucial in the nesting process of Olive Ridley Turtles *Lepidochelys olivacea*, so any impact on them could constitute a limiting factor in reproductive efficiency. Muscle weakness of the rear legs has been observed in some nesting females on La Escobilla beach in Oaxaca state, Mexico; however, this disorder has not been sufficiently researched. The aim of this study was to identify and describe this problem in a nesting colony of *L. olivacea* in La Escobilla. We obtained the biochemical profiles of eight females with clinical signs of muscle weakness of the rear legs, that could not build the incubation chamber for their nest. In order to compare their blood characteristics, we selected eight seemingly healthy turtles that successfully built their nests, laid eggs through oviposition and covered the nest. We found no significant differences in most of the blood parameters, except for Creatinine-Kinase (CK). Female turtles with muscle weakness presented significantly higher concentrations of CK (*t* = 2.1448, d.f. = 2, *P* <0.0001) when compared to the healthy turtles. CK is an appropriate enzyme for identifying the integrity of the muscle cell and is a muscle damage indicator. Our hypothesis is that the paresis observed in the rear legs of the female turtles in La Escobilla could be a chronic debilitation caused by a gradual exposure to biotoxins such as saxitoxins.

Keywords: Health, muscle, Olive Ridley Turtles, oviposition, rear-flippers.

Resumen: Las aletas traseras son cruciales en el proceso de anidación de la tortuga golfina *Lepidochelys olivacea*, así que cualquier impacto en ellas podría constituir un factor limitante en la eficiencia reproductiva. La debilidad muscular de las aletas traseras ha sido observada en algunas hembras anidantes de la playa La Escobilla en el estado de Oaxaca, México; sin embargo, este desorden no ha sido suficientemente investigado. El objetivo de este estudio fue identificar y describir este problema en una colonia anidante de *L. olivacea* en La Escobilla. Obtuvimos los perfiles bioquímicos de ocho hembras con signos clínicos de debilidad muscular de las aletas traseras, que impedía la construcción de la cámara de incubación para su nido. Con el fin de comparar sus características sanguíneas, seleccionamos además ocho hembras aparentemente sanas que construyeron exitosamente su nido, pusieron sus huevos mediante oviposición y los cubrieron. No encontramos diferencias significativas en la mayoría de los parámetros sanguíneos, excepto por la Creatinina-Kinasa (CK). Las hembras con la debilidad muscular presentaron altas concentraciones significativas de CK (*t* = 2.1448, d.f. = 2, *P* <0.0001) cuando fueron comparadas las tortugas aparentemente sanas. CK es una enzima apropiada para identificar la integridad de la célula muscular y es un indicador de daño muscular. Nuestra hipótesis es que la paresis observada en las patas traseras de las hembras anidantes en La Escobilla podría ser una debilitación crónica causada por una exposición gradual a biotoxinas como las saxitocinas.
INTRODUCTION

The Olive Ridley Turtle *Lepidochelys olivacea* (Eschscholtz, 1829) is one of the most abundant sea turtle species and classified as Vulnerable by IUCN Red List of Threatened Species (Abreu-Grobois & Plotkin 2008). In Mexico, all sea turtles are also classified as endangered species through the regulation NOM-ECOL-059-2010, and additionally, they are considered a priority species for conservation.

The Olive Ridley Turtle has a circumtropical distribution and inhabits the Atlantic, Pacific, and Indian Oceans, living mainly in the northern hemisphere (Bjorndal 1997). On the American continent, their most notable nesting beaches are located in Costa Rica (Cornelius et al. 1991; Fonseca et al. 2009), Panama (Cornelius et al. 2007; Honarvar et al. 2016), Nicaragua (Stewart 2001; Hope 2002), and Mexico (Peñaflores et al. 2000; Campbell 2007).

In Mexico, one of the world’s major nesting sites for this species is La Escobilla beach in Oaxaca state; where impressively large mass synchronous nesting aggregations – called arribadas – occur (Márquez & Van Dissell 1982). Despite their importance, relatively little is known about the health status or the presence of clinical signs of a disease in the nesting colony (Mashkour et al. 2020). In addition to human activity and predation, diseases are another important factor that have contributed to the decrease in the population of sea turtles (Wallace et al. 2010).

In Olive Ridley Turtle nesting activity, rear flippers play a key role in building the nest cavity (egg chamber); hence, the depth of a nest chamber is dependent on the size of a female’s rear flippers (Rusli 2019). Therefore, rear flippers are crucial in the nesting process, and any impact on them could constitute a limiting factor in reproductive efficiency.

On La Escobilla beach, various nesting turtles with muscle weakness of the rear legs have frequently been observed during the arribadas, a situation that is widely known empirically; however, the disorder has not been sufficiently researched. Until now, no studies on this subject have been performed on any nesting colony of *L. olivacea*; thus, the aim of this study was to identify and describe this problem in a nesting colony of *L. olivacea* in La Escobilla, Oaxaca, Mexico. This information will contribute to the protection of the species and allow for long-term health assessments and monitoring.

MATERIALS AND METHODS

This study was conducted on La Escobilla beach, located in the municipality of Santa María Tonameca on the southwestern Mexican Pacific coast (235,9041°N, 1451,2041°W). The beach is approximately 25 km long, and the Olive Ridley Turtles mainly nest along an 8 km strip at its western end.

During the development of a research project focused on assessing blood parameters in nesting Olive Ridley Turtles on La Escobilla beach, we encountered several females that displayed difficulties in making the egg chamber during the arribada events (September, October, and November) of the 2021 nesting season.

We obtained the biochemical profiles of eight females with clinical signs of muscle weakness of the rear legs that could not build the incubation chamber; as a result, after many attempts they ended up laying their eggs on the surface level of the sand (Image 1). Additionally, in order to compare their blood characteristics, we selected eight seemingly healthy turtles that successfully built their nests, laid eggs through oviposition and covered the nest. Previously, we conducted an external inspection of all the turtles evaluated to determine the existence of traumatic injuries.

Biometric data of all the turtles were taken according to the methodology described by Bolten (2000), including curved carapace length (CCL) and curved carapace width (CCW), which were measured using a flexible fiberglass tape (measurement error ± 0.5 cm, Limpus et al. 1983). The weight of each turtle was measured by suspending the turtle attached to a digital scale (MH-C 100 model, Mini Crane Scale).

Afterward, we collected blood samples from the dorsal cervical sinus, using a 1.5-gauge needle and a 5 ml syringe and transferred the samples into vacutainers® containing lithium heparin as an anticoagulant (Owens & Ruiz 1980). Prior to sampling, the puncture area was cleaned. Samples were stored in refrigeration at 4 °C until laboratory processing at the Universidad del Mar (not more than eight hours after sampling).

A whole blood sample was centrifuged in an Eppendorf model 5430 centrifuge at 3,000 rpm for 10 min. We used plasma in preference to serum because in reptiles clot formation is unpredictable, changing biochemical values and occasionally producing hemolysis in the blood samples (Bolten & Bjorndal 1992). Plasma was placed posteriorly into 1.6-ml cryogenic vials. Sixteen plasma parameters were recorded using the automated blood chemistry analyzer Celercare V5 (Kabla Veterinary DX) to establish the sea turtles’ health.
Paresis in a nesting colony of *Lepidochelys olivacea* Buenrostro-Silva et al.

Image 1. *Lepidochelys olivacea* with evident muscle weakness (paresis) of the rear legs laid eggs on the surface of the sand in La Escobilla beach, Oaxaca, Mexico. © Jesús García-Grajales.

Image 1. *Lepidochelys olivacea* with evident muscle weakness (paresis) of the rear legs laid eggs on the surface of the sand in La Escobilla beach, Oaxaca, Mexico. © Jesús García-Grajales.

Analyzed parameters were divided into three groups: 1) nutrients and metabolites: Albumin (ALB; g dL\(^{-1}\)), total protein (TP), globulin (GLO), Albumin/ Globulin (A/G) ratio, glucose (GLU), blood urea nitrogen (BUN), cholesterol (CHOL), creatinine (CRE), blood urea nitrogen/creatinine (BUN/CRE) ratio, total bilirubin (TBIL); 2) enzymes: amylase (AMY), Alanine aminotransferase (ALT), creatinine kinase (CK), alkaline phosphatase (ALP); and 3) electrolytes: calcium (Ca) and phosphorus (P). RESULTS

Descriptive statistics of SCL, WCL, CCL, CCW, weight and blood parameters of the Olive Ridley Turtles are presented in Table 1. We found no significant differences in most of the blood parameters, except for CK.

Female turtles with muscle weakness presented significantly higher concentrations of CK (\(t = 2.1448, \text{d.f.} = 2, p < 0.0001\)) when compared with healthy turtles. During the external examination of the turtles, there was no evidence of recent traumatic injuries. However, one of the turtles with evident muscle weakness (paresis) of the rear legs laid eggs on the surface of the sand, after several failed attempts to perform the incubation chamber (Image 1).

DISCUSSION

Although Olive Ridley Turtles are the most abundant sea turtle species globally, knowledge regarding their health on mass nesting beaches remains limited. We found similar values in most blood parameters between turtles with clinical signs of paresis and seemingly healthy turtles; however, CK was highlighted as the muscle damage indicator.
Paresis in a nesting colony of Lepidochelys olivacea

Buenrostro-Silva et al.

22136

Table 1. Biometric data and blood chemistry of the Olive Ridley Turtles with clinical signs of muscle weakness of the rear legs (paresis) and seemingly healthy turtles in La Escobilla beach, Oaxaca, Mexico.

<table>
<thead>
<tr>
<th></th>
<th>Turtles with paresis</th>
<th>Seemingly healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (SD)</td>
<td>Range</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>Biometric data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>36.2 ± 6.71</td>
<td>27.55 – 45.45</td>
</tr>
<tr>
<td>CCL</td>
<td>65.97 ± 4.18</td>
<td>61.5 – 72.1</td>
</tr>
<tr>
<td>CCW</td>
<td>69.3 ± 4.91</td>
<td>62.6 – 78.7</td>
</tr>
<tr>
<td>Blood chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALB</td>
<td>1.01 ± 0.16</td>
<td>0.8 – 1.3</td>
</tr>
<tr>
<td>TP</td>
<td>3.41 ± 0.49</td>
<td>2.8 – 4.2</td>
</tr>
<tr>
<td>GLO</td>
<td>2.4 ± 0.45</td>
<td>1.9 – 3.3</td>
</tr>
<tr>
<td>A/G</td>
<td>0.44 ± 0.09</td>
<td>0.3 – 0.6</td>
</tr>
<tr>
<td>GLU</td>
<td>76.6 ± 25.56</td>
<td>42 – 107</td>
</tr>
<tr>
<td>BUN</td>
<td>17.4 ± 13.94</td>
<td>7.68 – 50.2</td>
</tr>
<tr>
<td>CHOL</td>
<td>234 ± 48.06</td>
<td>176 – 339</td>
</tr>
<tr>
<td>CRE</td>
<td>0.74 ± 0.23</td>
<td>0.46 – 0.99</td>
</tr>
<tr>
<td>BUN/CRE</td>
<td>29.75 ± 33.98</td>
<td>11 – 109</td>
</tr>
<tr>
<td>TBIL</td>
<td>0.21 ± 0.07</td>
<td>0.12 – 0.34</td>
</tr>
<tr>
<td>AMY</td>
<td>338.5 ± 129.16</td>
<td>143 – 552</td>
</tr>
<tr>
<td>ALT</td>
<td>2.5 ± 0.92</td>
<td>1 – 3</td>
</tr>
<tr>
<td>CK</td>
<td>1921.5 ± 771.79</td>
<td>1133 – 3143</td>
</tr>
<tr>
<td>ALP</td>
<td>21.6 ± 5.52</td>
<td>13 – 31</td>
</tr>
<tr>
<td>P</td>
<td>8.6 ± 1.4</td>
<td>6.98 – 10.55</td>
</tr>
<tr>
<td>Ca</td>
<td>6.8 ± 1.74</td>
<td>4.9 – 10.1</td>
</tr>
</tbody>
</table>

CK is an appropriate enzyme for identifying the integrity of the muscle cell; and is considered a specific muscle enzyme; that is, it increases in the bloodstream when a muscle disease is present (Perrault et al. 2012; Anderson et al. 2013). With this in mind, paresis is characterized as an inability of muscles to perform their usual functions. Its physiopathology is related to the motor function of the voluntary tracks consisting of the upper and lower motor neurons, peripheral nerves, neuromuscular plate and muscle fibers, so damage to any of these structures causes a paresis that depends on the degree of the injury.

Except for Espinoza-Romo et al. (2018), there are no previous reports on CK values in L. olivacea. Those authors showed a CK mean of 245.3 ± 386 for L. olivacea in northern Sinaloa, Mexico. On the contrary, we found high CK values in turtles with obvious muscle problems of the rear legs; however, the apparently healthy females showed values close to those reported by Espinoza-Romo et al. (2018). Because there are no papers published about muscle weakness (paresis) in L. olivacea, we compared our results to Caretta caretta, since this species has some similarities in their eating habits, sharing an analogous position in the food chain.

Previous studies on several species have reported different degrees of paresis. Jacobson et al. (2006) describes clinical signs of a neurological disorder in subadult loggerhead sea turtles (C. caretta) in south Florida, USA. In this study, there was no evidence of heavy metal toxicosis and organophosphate toxicosis as possible causes; instead, the clinical changes observed resulted from combined spirorchiid parasitism and possible chronic exposure to a novel toxin present in the diet of C. caretta.

Herrera-Galindo et al. (2015) reported several dead sea turtles (Chelonia mydas, Eretmochelys imbricata, L. olivacea) on the coast of Oaxaca, Mexico. This study described the presence of salps and cells of Pyrodinium

PSP has been identified as the most toxic and dangerous syndrome along the Pacific coast (Sierra-Beltrán et al. 1998). Two dinoflagellate species (Gymnodinium catenatum and P. bahamense) produce saxitoxin that is associated with these PSP events (Ochoa et al. 1997; Cusik & Sayler 2013). These phenomena affect the entire trophic web, principally primary consumers, but organisms such as fish, marine mammals and sea turtles that feed on planktivorous species may also be affected (Sellner et al. 2003; Garate-Lizarra et al. 2004).

In animals and humans, clinical signs of saxitoxin intoxication include muscular paralysis and pronounced dyspnea, which, if not promptly treated, can result in death from respiratory paralysis (Hallegraeff 1993). Although lethal doses of saxitoxins have not been defined for sea turtles or other reptiles (González-Barrientos et al. 2019), constant ingestion of this dinoflagellate species could probably provide enough toxin to produce muscle weakness of the rear legs in sea turtles.

Later, González Barrientos et al. (2019) presented evidence of abnormal clinical signs in stranded Green Sea Turtles Chelonia mydas that were exposed to saxitoxins and tetrodotoxins on the southern Caribbean coast of Costa Rica. Among the stranded turtles, two live green turtles exhibited extreme paresis. Saxitoxicosis in green turtles appears to have resulted from opportunistic foraging on the Caribbean Sharp-nosed Puffer Canthigaster rostrata.

Although specific causes of muscle weakness (paresis) in Olive Ridley Turtles remain unknown, we hypothesize that the paresis observed in the rear legs of the female turtles in La Escobilla could be a chronic debilitation due to a gradual exposure to biotoxins such as saxitoxins. It is important to mention that this debilitation could be a limiting factor in the reproductive efficiency of a nesting colony of L. olivacea in La Escobilla, Oaxaca; therefore, we recommended initiating a continuous monitoring program to follow the occurrence of paresis in subsequent years in order to better document its prevalence and to follow the progression of this muscle weakness among sea turtles.

REFERENCES

Author details: ALEJANDRA BUENROSTRO-SILVA is currently a student of the PhD program of Ciencias Agropecuarias y Recursos Naturales of Autonomous University of the State of Mexico. Moreover, she is Professor/ Research of Universidad del Mar in the coast of Oaxaca, Mexico. Her interests include the conservation, ecology, and health of reptiles, amphibians, and mammals. JESÚS GARCÍA-GRAJALES is currently a Professor/ Research of Universidad del Mar in the coast of Oaxaca, Mexico. His interests include the tropical herpetofauna responses to anthropogenic disturbances, habitat fragmentation and conservation, ecology, and health of amphibians, reptiles and mammals. PETRA SÁNCHEZ NAIVA is currently professor/scientist researcher at the Autonomous University of the State of Mexico (UAEMEx). Is responsible for the Biosustentables Systems Laboratory of the Faculty of Sciences in UAEMEx. MARÍA DE LOURDES RUIZ-GÓMEZ has been a professor/scientist researcher for 10 years at the Autonomous University of the State of Mexico. Her primary interests are Animal Personalities, Behavioral Ecology, Welfare, Learning and their underlying mechanisms, especially on fish, amphibians and reptiles as models; as well as their implications on global change and conservation.

Author contributions: We thank the Universidad Autónoma del Estado de México (UAEMEx) and its Division of Postgraduate Studies (PCARN) for the logistics and facilities provided. To Universidad del Mar for the facilities provided to project CUP: 2R2104. Research permits were obtained from Secretaría de Medio Ambiente y Recursos Naturales (SEMARNAT: SGPA/ D05/03919/21). In addition, special thanks go to A.T. Rosewicz for her revisions and suggestions that improved the English of this manuscript. JG-G, PS-N, and ML-RG thank the Sistema Nacional de Investigadores (SNI) for its grant.
Communications

New records of pteridophytes in Mount Matutum Protected Landscape, South Central Mindanao, Philippines with notes on its economic value and conservation status

Some threatened woody plant species recorded from forests over limestone of the Philippines

Status of mangrove forest in Timaco Mangrove Swamp, Cotabato City, Philippines

A comparative analysis of the past and present occurrences of some species of Paphiopedilum (Orchidaceae) in northeastern India using MaxEnt and GeoCAT
– Debonina Dutta & Aparajita De, Pp. 22086–22097

Foraging activity and breeding system of Avicennia officinalis L. (Avicenniaceae) in Kerala, India

Diversity patterns and seasonality of hawkmoths (Lepidoptera: Sphingidae) from northern Western Ghats of Maharashtra, India

Population trends of Mugger Crocodile and human-crocodile interactions along the Savitri River at Mahad, Maharashtra, India
– Utkarsha Manish Chavan & Manoj Ramakant Borkar, Pp. 22118–22132

Paresis as a limiting factor in the reproductive efficiency of a nesting colony of Lepidochelys olivacea (Echscholtz, 1829) in La Escobilla beach, Oaxaca, Mexico

Notes on the nesting and foraging behaviours of the Common Coot Fulica atra in the wetlands of Viluppuram District, Tamil Nadu, India
– M. Pandian, Pp. 22139–22147

Population abundance and threats to Black-headed Ibis Threskiornis melanocephalus and Red-naped Ibis Pseudibis papillosa at study sites in Hajjar district, Haryana, India
– Anjali & Sarita Rana, Pp. 22148–22155

Crop raiding and livestock predation by wildlife in Khaptad National Park, Nepal
– Ashish Bashyal, Shyam Sharma, Narayan Koirala, Nischal Shrestha, Nischit Aryal, Bhupendra Prasad Yadav & Sandeep Shrestha, Pp. 22156–22163

Review

An annotated checklist of odonates of Amboli-Chaukul-Parpoli region showing new records for the Maharashtra State, India with updated state checklist

Short Communications

The new addition of Blue Pimpernel of Primulaceae to the state flora of Assam, India
– Sushmita Kalita, Barnali Das & Namita Nath, Pp. 22179–22183

A new species of genus Neocerura Matsumura, 1929 (Notodontidae: Lepidoptera) from India
– Amritpal Singh Kaleka & Rishi Kumar, Pp. 22184–22189

Rediscovery of an interesting preying mantis Deiphobella laticeps (Mantodea: Rivetinidae) from Maharashtra, India
– Gauri Sathaye, Sachin Ranade & Hemant V. Ghathe, Pp. 22190–22194

Camera trapping records confirm the presence of the elusive Spotted Linsang Prionodon pardicolor (Mammalia: Carnivora: Prionodontidae) in Murlen National Park (Mizoram, India)
– Amit Kumar Bal & Anthony J. Giordano, Pp. 22195–22200

Notes

First sighting record of the Orange-breasted Green-Pigeon Treron bicinctus (Aves: Columbiformes: Columbidae) from Chittaranjan, West Bengal, India
– Shahbaz Ahmed Khan, Nazneen Zehra & Jamal Ahmad Khan, Pp. 22201–22202

Book Reviews

Decoding a group of winged migrants!
– Review by Priyanka Iyer, Pp. 22203–22204

First steps of citizen science programs in India
– Review by Aishwarya S. Kumar & Lakshmi Nair, Pp. 22205–22206