Associate Editors
Mrs. Mira Bhojwani, English Editors
Professor of Taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India
Dr. Rajeev Raghavan
Salobrinho, Ilhéus - Bahia - Brasil
do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km 16 (45662-000)
Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador
Prof. Dr. Mirco Solé
Hong Kong, Pokfulam Road, Hong Kong
Dr. John Fellowes
Laboratory, JJ Thomson Avenue, Cambridge

Editorial Board
Dr. Russel Mittermeier
Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Subject Editors 2018–2020

Fungi
Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. N.P. Balakrishnan, Ret. Joint Director, BSF, Coimbatore, India
Dr. Shonil Bhagwat, Open University and University of Oxford, UK
Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India
Dr. Ferdinando Boero, Università del Salento, Lecce, Italy
Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada
Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines
Dr. F.B. Vincent Florens, University of Mauritius, Mauritius
Dr. Merlin Franco, Curtin University, Malaysia
Dr. V. Iyudinayai, St. Xavier’s College, Palayamkottai, Tamil Nadu, India
Dr. B.S. Khola, Botanical Survey of India, Gangtok, Sikkim, India
Dr. Pankaj Kumar, Kadoorie Farm and Botanic Garden Corporation, Hong Kong S.A.R., China
Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India
Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
Dr. Vijayaasaran Ramam, University of Mississippi, USA
Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India
Dr. K. Ravikumar, FRIHT, Bengaluru, Karnataka, India
Dr. Aparna Wavle, Pune, Maharashtra, India
Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China
Dr. Noor Ashar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
Dr. M.K. Vasudeva Rao, Shiv Ranjani Housing Society, Pune, Maharashtra, India
Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
Dr. Mandar Datar, Agharkar Research Institute, Pune, Maharashtra, India
Dr. M.K. Janarthanan, Goa University, Goa, India
Dr. K. Karkhegan, Botanical Survey of India, India
Dr. Erol Vela, University of Montpellier, Montpellier, France
Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India
Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA
Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India
Dr. Analinda Mani-Fajard, University of the Philippines Los Banos, Laguna, Philippines
Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India
Dr. Anirban Alam, Baranasi Bhaduri (accredited A grade by NAAC), Rajkot, Rajasthan, India
Dr. K.P. Rajesh, Zamori’s Guru Nanak Arvapane College, GA College PO, Kozhikode, Kerala, India
Dr. David E. Boothford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA
Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India
Dr. Navendu Page, Wildlife Institute of India, Chanderbani, Dehradun, Uttarakhand, India

Invertebrates
Dr. R.K. Avasthi, Rohtak University, Haryana, India
Dr. D.B. Bastawade, Maharashtra, India
Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India
Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India
Dr. Anirban-Dipen-Saarachan, University of Pretoria, Queenswood, South Africa
Dr. Rory Dow, National Museum of Natural History, Naturalis, The Netherlands
Dr. Brian Fisher, California Academy of Sciences, USA
Dr. Richard Gallon, llandudno, North Wales, LL30 1UP
Dr. Hemant V. Ghate, Modern College, Pune, India
Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh
Mr. Jatishwor Singh Irungbam, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Merlin Franco, Curtin University, Malaysia
Dr. B.A. Daniel, Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), Coimbatore, Tamil Nadu 641035, India

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scope
For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions
For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

continued on the back inside cover
Wildlife at the crossroads: wild animal road kills due to vehicular collision on a mountainous highway in northwestern Himalayan region

Muzaffar A. Kichloo 1, Asha Sohil 2 & Neeraj Sharma 3

1 Department of Environmental Sciences, Govt. Degree College, Banihal, Union Territory of Jammu & Kashmir 182146, India.
2 P.G. Department of Environmental Sciences, University of Jammu, Union Territory of Jammu & Kashmir 180006, India.
3 Institute of Mountain Environment, Bhaderwah Campus University of Jammu, Union Territory of Jammu & Kashmir 182222, India.

Abstract: Wildlife mortality due to vehicular collision is well known across the world and the number of such incidences is steadily rising in Himalaya as well. To assess the quantum of wildlife road kills, we conducted an intensive survey spanning 33 months along a mountainous National Highway 244 in the Union Territory of Jammu & Kashmir. Forty-nine wild animal carcasses of 13 species of higher vertebrates were observed lying on the road, shoulders, edges, and valley slopes. These included seven mammals, four birds, and two reptiles. This survey, first of its kind in this part of the Himalaya would be helpful in understanding the underlying reasons of the rising wildlife fatalities on the hill roads, identifying susceptible hotspots, and developing measures to address this new threat to Himalayan wildlife. We recommend creating wildlife passages, raising speed halters, and placing warning signages in vulnerable sections to reduce the road-related wildlife mortality in such mountainous highways.

Keywords: Carcasses, dumping sites, mammals, mortality, National Highway, non-protected areas, road kills, speed halters, wildlife fatalities, wildlife passages.

Roads are the leading cause of anthropogenic mortality after legal harvesting for many vertebrates world over (Hill et al. 2019). The effect of roads on wildlife is multidimensional, from habitat loss and fragmentation (Burnett 1992; Richardson et al. 1997; Carr & Fahring 2001), altering movement and distribution patterns (Newmark et al. 1996; Desai & Baskaran 1998), affecting breeding (Reijnen et al. 1995), and causing injury and mortality by vehicular collisions (Das et al. 2007; Seshadri et al. 2009; Baskaran & Boominathan 2010; Hill et al. 2019; Schwartz et al. 2020). This barrier effect and wildlife-vehicular collisions are predicted to worsen as road network and traffic intensity rise internationally. The incidents of mammal-vehicle collisions have increased dramatically since the early 1970s (Hill et al. 2019).

India has the world’s second largest road network, with a total road length of 6.2 million km (Ministry of Road Transport and Highways 2021). A country with such a massive road system puts animals that scurry or move across the highways in grave danger. The Union Territory (UT) of Jammu & Kashmir has seen a massive rise in national highway expansion, up about 194 percent from 823 km in 2003, to 2,433 km now, accounting for 1.8 percent of India’s entire national highway network (Ministry of Road Transport and Highways 2021).

Indian Himalayan region with a wide range of habitats support unique arrays of biodiversity and ecosystem services both within and outside of the protected areas. The non-protected areas (Non-PAs) in the Indian Himalaya house a good number of wildlife species (Thapa et al. 2021) which are ecological generalists and...
possess good amount of behavioural plasticity (Buchi & Vuilleumier 2014; Gaynor et al. 2018). These non-PAs lack scientific monitoring and management strategies to conserve wildlife species which increases the risk of them coming in close proximity to human-dominated areas and thus becoming vulnerable to several fatalities including vehicular collisions. Apart from a few short-term studies on wildlife road kills (Gokula 1997; Sunder 2004; Das et al. 2007; Seshadri et al. 2009; Baskaran & Boominathan 2010; Bhupathy et al. 2011; Kumar & Srinivasulu 2015; Samson et al. 2016; Santhoshkumar et al. 2017; Hatti & Mubeen 2019), no major study has been conducted in India or in the western Himalaya, emphasizing the fact that very little attention is being paid to the impacts of roads and highways on wildlife. In order to assess the quantum of road kills in the region, we monitored wildlife road kills on National Highway 244 (NH-244), which connects Batote (Jammu) to Kashmir Valley, in the UT of Jammu & Kashmir. The highway creates a dangerous terrain for wildlife that live besides it, as evident by the number of road kill reports that have piled up over the years.

Material and Methods

To understand the frequency of road kills, their likely causes and the wild animal species exposed to the accidents, we carried out surveys on NH-244, connecting Batote (Jammu) to Kashmir Valley. Upgraded to a national highway in 2016, the road is currently undergoing upgrades, including widening of the lanes and construction of extensive tunnels. The highway, which is built into the mountainside, criss-crosses multiple perennial streams and runs the substantial length of the Chenab gorge. Located between 823 and 1,638 m, the corridor is characterized with a broad range of habitats, including sub-temperate broad-leaved mixed forests interspersed with pure conifer patches, dry open scrub, rocky slopes, villages and urban areas, supporting a rich biodiversity. Our study was limited to 120 km stretch on NH-244, from Batote, a sub-urban township to Kishtwar town (Figure 1). The highway was surveyed by car twice a month for a period of two years and nine months, from January 2018 to December 2019 and from December 2020 to August 2021. No surveys could be conducted during 2020 due to COVID-19 restrictions. The road kills sighted during the whole effort were identified up to the

![Figure 1. Location of NH-244 in the UT of Jammu & Kashmir, India.](image-url)
species level (except for reptiles). The spatial attributes of the accident site were recorded and the carcasses were removed from the road to avoid repetitive counts. No specimens were collected during the survey.

RESULTS AND DISCUSSION

During the surveys, we recorded 49 road kills involving 13 species of higher vertebrates (Table 1; Image 1a-g), including seven species of mammals, four species of birds, and two species of reptiles. Golden Jackal *Canis aureus*, Rhesus Macaque *Macaca mulatta*, and Red Fox *Vulpes vulpes* suffered the most fatalities among the mammals (Table 1). Two carcasses each of globally threatened Common Leopard *Panthera pardus* and Himalayan Vulture *Gyps himalayensis* were also observed during the surveys. The data analysis revealed an encounter rate of 0.40 road kills/km and most of the road kill aggregations were found near Batote, a vital junction intersecting the Jammu-Srinagar National Highway (NH-44). The location of carcasses found during the surveys is shown in Figure 2.

The animal carcasses so observed indicated that these species were struck or overrun by speeding vehicles especially during night as most of victims were nocturnal. During the night, animals can be seen roaming around the marketplaces and rubbish dumps in search of food. Predators also make their way down the mountainside in search of water and food sources. As a result, these animals are subjected to rash and reckless driving and end up in road mishaps. Our study found that mammals are affected more than other taxa, mostly including nocturnal animals. In many instances, the authors observed that species like Red Fox and Golden Jackal get traumatized in front of the high beam lights of vehicles and get transfixed on the road and ultimately fall victim to speeding vehicles. Another vulnerable group is the scavengers that are drawn to the roadside dead animal carcasses and eventually get killed. Although the numbers of these taxa seem to be very small, such loss is insufferable considering their slow life histories and low population densities (Baskaran & Boominathan 2010).

The secondary information obtained as a result of casual conversation with regularly plying drivers substantiates an increase in wild animal sightings, notably vultures,
Road kills on mountainous highway in Himalaya

Kichloo et al.

Table 1. Road kills recorded on NH-244 during the sampling period.

<table>
<thead>
<tr>
<th>Species</th>
<th>Common name</th>
<th>IUCN status</th>
<th>Number</th>
<th>Habitat type</th>
<th>Altitude (in m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Panthera pardus</td>
<td>Common Leopard</td>
<td>VU</td>
<td>2</td>
<td>PF, BD</td>
<td>1000–1415</td>
</tr>
<tr>
<td>2. Vulpes vulpes</td>
<td>Red Fox</td>
<td>LC</td>
<td>3</td>
<td>PF, BD, OS</td>
<td>1224–1580</td>
</tr>
<tr>
<td>3. Canis aureus</td>
<td>Golden Jackal</td>
<td>LC</td>
<td>12</td>
<td>PF, BD, DS, UR</td>
<td>990–1332</td>
</tr>
<tr>
<td>4. Paguma larvata</td>
<td>Himalayan Palm Civet</td>
<td>LC</td>
<td>2</td>
<td>PF, BD</td>
<td>890–940</td>
</tr>
<tr>
<td>5. Viverricula indica</td>
<td>Small Indian Civet</td>
<td>LC</td>
<td>2</td>
<td>OF, UR</td>
<td>934–1244</td>
</tr>
<tr>
<td>6. Macaca mulatta</td>
<td>Rhesus Macaque</td>
<td>LC</td>
<td>7</td>
<td>PF, BD, OS, UR</td>
<td>910–1310</td>
</tr>
<tr>
<td>7. Eoglaucomys fimbriatus</td>
<td>Kashmir Flying Squirrel</td>
<td>LC</td>
<td>2</td>
<td>PF</td>
<td>1100–1246</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Gyps himalayensis</td>
<td>Himalayan Vulture</td>
<td>NT</td>
<td>2</td>
<td>PF</td>
<td>1250</td>
</tr>
<tr>
<td>9. Milvus migrans</td>
<td>Black Kite</td>
<td>LC</td>
<td>3</td>
<td>OS, UR</td>
<td>1140–1402</td>
</tr>
<tr>
<td>10. Pycnonotus cafer</td>
<td>Red-vented Bulbul</td>
<td>LC</td>
<td>2</td>
<td>OS</td>
<td>1016–1456</td>
</tr>
<tr>
<td>11. Acrerotheres tristis</td>
<td>Common Myna</td>
<td>LC</td>
<td>3</td>
<td>OS, UR</td>
<td>944–1113</td>
</tr>
<tr>
<td>Reptiles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Snake sp.</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>UR</td>
<td>943–1105</td>
</tr>
<tr>
<td>13. Calotes sp.</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>OS, UR</td>
<td>946–1510</td>
</tr>
</tbody>
</table>

VU—Vulnerable | NT—Near Threatened | LC—Least Concern | PF—Pine forests | OS—Open Scrub | BD—Broadleaved mixed | UR—Urban areas.

Kites, civets, jackals and common leopards in recent years.

The wildlife in the Himalaya is subjected to many threats including the one under discussion that needs to be seriously addressed and appropriately dealt with. Assessment of wildlife vehicular mortality is important to understand road impacts, effects on local population of wildlife, to decipher the accident-prone hotspots, and identify the factors underlying the animal road fatalities (Das et al. 2011). Our survey may not have reported all the road kills as many of the carcasses remain hidden beneath structures or foliage, or are removed by other motorists, authorities, or scavenger animals before being discovered (Dickerson 1939; Vestjens 1973; Coulson 1982; Taylor & Goldingay 2010). The study revealed a major road kill cluster near Batote. The study revealed a major road kill cluster around Batote township, which may be because of the presence of open waste dumping site located by the side of the road as well as a water channel fulfilling feeding and water demands of wild animals. Given the current grim situation and foreseeing the highway expansion that would exacerbate already existing threats, necessitates call for scientifically-based mitigation measures. These include construction of wildlife passages at vulnerable sections especially the below-road crossing structures like culverts for larger species and drainage pipes for small size species (Chen et al. 2021), maintaining a wide field of view for drivers and wildlife, widening shoulders to facilitate wait and go calls, planting caution boards and laying speed breakers near water bodies and dumping sites, sensitizing the drivers and organising citizens to build a reliable dataset for better analysis.

REFERENCES

Road kills on mountainous highway in Himalaya

Kichloo et al.

Communications

Macrolichens of Mathikettan Shola National Park, Western Ghats: a preliminary investigation with some new records

New distribution record of globally threatened Ocean Surf Grass Halophila beccarii in western Sarawak, Malaysian Borneo

View Point

COVID-19 and civil unrest undoing steady gains in karst conservation and herpetological research in Myanmar, and an impediment to progress

Short Communications

Morphological characterization and mt DNA barcode of a tiger moth species, Asota fuscus (Fabricius, 1775) (Lepidoptera: Noctuidae: Erebidae: Aganaeidae) from India
– Aparna Sureshchandra Kalawate, K.P. Dinesh & A. Shabnam, Pp. 20503–20510

Distribution of Smooth-coated Otters Lutrogale perspicillata (Mammalia: Carnivora: Mustelidae): in Ratnagiri, Maharashtra, India
– Swandan Patil & Kranti Yardi, Pp. 20511–20516

Wildlife at the crossroads: wild animal road kills due to vehicular collision on a mountainous highway in northwestern Himalayan region
– Muzaffar A. Kichloo, Asha Sohil & Neeraj Sharma, Pp. 20517–20522

Notes

Robiquesta gracilis (Lindl.) Garay—a new record to the flora of Anamalai Hills, Tamil Nadu, India
– B. Subbaiyan, V. Ganesan, P.R. Nimal Kumar & S. Thangaraj Panneerselvam, Pp. 20523–20525

Ipomoea laxiflora H.J. Chowdhery & Debta (Convolvulaceae): new records for the Western Ghats and semiarid regions

Counting the cost: high demand puts Bunium persicum (Boiss.) B.Fedtsch. in jeopardy
– Monika Sharma, Manisha Mathela, Rupali Sharma, Himanshu Bargali, Gurinderjit S. Goraya & Amit Kumar, Pp. 20530–20533

First record of Parasitic Jaeger Stercorarius parasiticus (Aves: Charadriiformes: Stercorariidae) from inland freshwater Inle Lake, Myanmar

Book Review

Capparis of India
– V. Sampath Kumar, Pp. 20537–20538

Articles

Estimating the completeness of orchid checklists and atlases: a case study from southern Italy
– Antonio Croce, Pp. 20311–20322

A floristic survey across three coniferous forests of Kashmir Himalaya, India—a checklist
– Ashraf Ahmad Dar, Akhtar Hussain Malik & Narayanawamy Parthasarathy, Pp. 20323–20345

Associations of butterflies across different forest types in Uttarakhand, western Himalaya, India: implications for conservation planning
– Arun Pratap Singh, Pp. 20346–20370

Comparison of bird diversity in protected and non-protected wetlands of western lowland of Nepal

Local hunting practices and perceptions regarding the distribution and ecological role of the Large Flying Fox (Chiroptera: Pteropodidae: Pteropus vampyrus) in western Sarawak, Malaysian Borneo

Estimating the completeness of orchid checklists and atlases: a case study from southern Italy
– Antonio Croce, Pp. 20311–20322

A floristic survey across three coniferous forests of Kashmir Himalaya, India—a checklist
– Ashraf Ahmad Dar, Akhtar Hussain Malik & Narayanawamy Parthasarathy, Pp. 20323–20345

Associations of butterflies across different forest types in Uttarakhand, western Himalaya, India: implications for conservation planning
– Arun Pratap Singh, Pp. 20346–20370

Comparison of bird diversity in protected and non-protected wetlands of western lowland of Nepal

Local hunting practices and perceptions regarding the distribution and ecological role of the Large Flying Fox (Chiroptera: Pteropodidae: Pteropus vampyrus) in western Sarawak, Malaysian Borneo

Communications

Macrolichens of Mathikettan Shola National Park, Western Ghats: a preliminary investigation with some new records

New distribution record of globally threatened Ocean Surf Grass Halophila beccarii in western Sarawak, Malaysian Borneo

An inventory of new orchid (Orchidaceae) records from Kozhikode, Kerala, India

Abundance and spatial distribution analyses of Sternomonopus mooni Thwaites (Dipterocarpaceae) - a critically endangered species endemic to Sri Lanka

Plant diversity of Point Calimere Wildlife Sanctuary and fodder species grazed by the Blackbuck Antilope cervicapra L.
– Ashutosh Kumar Upadhyay, A. Andrew Emmanuel, Ansa Sarah Varghese & D. Narasimhan, Pp. 20433–20443

Raptors observed (1983–2016) in National Chambal Gharial Sanctuary: a perspective on prey selection and exploitation in semi-arid biogeographic region suggestions for parametric studies on ecological continuity in Khathiar-Gir Ecoregion, India

Nesting success of Sharpe’s Longclaw (Macronyx sharpei Jackson, 1904) around the grasslands of lake O’bolosat Nyandarua, Kenya

Population, distribution and diet composition of Smooth-coated Otter Lutrogale perspicillata Geoffroy, 1826 in Hossur and Dharmapuri Forest Divisions, India
– Nagarajan Baskaran, Raman Sivaraj Sundarraj & Raveendranathanpillai Sanil, Pp. 20469–20477

Utilization of home garden crops by primates and current status of human-primate interface at Galigamuwa Divisional Secretariat Division in Kegalle District, Sri Lanka
– Charmalie Anuradhie Dona Nahallage, Dahanakge Ayesha Madushani Dasanayake, Dilan Thisaru Hewamanna & Dissanayakakalage Tharaka Harshani Ananda, Pp. 20478–20487

Revival of Eastern Swamp Deer Rucervus duvaucelli ranjitsinhi (Grosves, 1982) in Manas National Park of Assam, India

Trypanosoma evansi infection in a captive Indian Wolf Canis lupus pallipes– molecular diagnosis and therapy
– Manojita Dash, Sarat Kumar Sahu, Santosh Kumar Gupta, Niranjana Sahoo & Debarat Mohapatra, Pp. 20494–20499

Notes

Robiquesta gracilis (Lindl.) Garay—a new record to the flora of Anamalai Hills, Tamil Nadu, India
– B. Subbaiyan, V. Ganesan, P.R. Nimal Kumar & S. Thangaraj Panneerselvam, Pp. 20523–20525

Ipomoea laxiflora H.J. Chowdhery & Debta (Convolvulaceae): new records for the Western Ghats and semiarid regions

Counting the cost: high demand puts Bunium persicum (Boiss.) B.Fedtsch. in jeopardy
– Monika Sharma, Manisha Mathela, Rupali Sharma, Himanshu Bargali, Gurinderjit S. Goraya & Amit Kumar, Pp. 20530–20533

First record of Parasitic Jaeger Stercorarius parasiticus (Aves: Charadriiformes: Stercorariidae) from inland freshwater Inle Lake, Myanmar

Book Review

Capparis of India
– V. Sampath Kumar, Pp. 20537–20538