Seasonal variations influencing the abundance and diversity of plankton in the Swarnamukhi River Estuary, Nellore, India

Krupa Ratnam1*, V.P. Limna Mol2, S. Venkatnarayanan3, Dilip Kumar Jha4, G. Dharani5 & M. Prashanthi Devi6*

1,4,5 Ocean Science and Technology for Islands, National Institute of Ocean Technology, Ministry of Earth Sciences, Govt. of India, Chennai, Tamil Nadu 600100, India.
2 School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Panangad, Kochi, Kerala 682506, India.
3 Department of Environmental Science and Management, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India.

1 ratnamkrupa@gmail.com, 2 limnaa@gmail.com, 3 venkatnarayanan.srinivas@gmail.com, 4 dilipjhaniot@gmail.com, 5 dhara@niot.res.in, 6 prashanthidevi@gmail.com (* corresponding authors)

Abstract: An integrated approach was used to study the seasonal influence on the abundance and diversity of phytoplankton and zooplankton in the Swarnamukhi River Estuary (SRE) and the adjacent coast covering five stations by collecting monthly samples from the years 2014 to 2017. A total of 54 phytoplankton species conforming to four families and 58 zooplankton species conforming to nine families were recorded. Phytoplankton abundance and richness were high during pre-monsoon (PRM - 56410 cells/L) followed by monsoon (MON – 42210 cells/L). A similar trend was observed in the case of zooplankton, where abundance was recorded high during PRM (124261 ind./m³) followed by MON (111579 ind./m³). Moreover, phytoplankton and zooplankton were dominated by the diatoms and copepods, respectively. Both phytoplankton and zooplankton exhibited significant temporal (F = 26.4, p <0.05) and spatial (F = 32.1, p <0.05) variations. The higher density and abundance were recorded in the inner stations compared to the open sea. The present study reveals that the SRE have a rich diversity which could be attributed to a higher nutrient influx in the inner stations. The anthropogenic discharge from the surrounding aqua farms, agricultural land, and human settlement area could cause concerns for the local flora and fauna if a proper mitigation plan is not evolved through long-term monitoring study in this coastal region.

Keywords: Abundance, diversity, estuary, indices, Nellore, Phytoplankton, zooplankton.

Editor: Anonymity requested. Date of publication: 26 February 2022 (online & print)

Copyright: © Ratnam et al 2022. Creative Commons Attribution 4.0 International License. JOTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: The authors are grateful to the Ministry of Earth Sciences (MoES), Govt. of India, for providing funding to carry out the present study.

Competing interests: The authors declare no competing interests.

Author details & Author contributions: See end of this article.

Acknowledgements: We are thankful to Dr. G. A. Ramadass, the Director, NIOT, MoES, Govt. of India, Chennai, for the approvals and constant support. Thanks to Dr. R. Kurugouthaman, Scientist-G (Retd.), NIOT, for his encouragement. We also thank our colleagues Dr. S. Rajaguru, Dr. S. Venkatesh, Mr. P. Sathish Kumar and Dr. Vikas Pandey and the staff and students of Department of Environmental Science and Management, School of Environmental Sciences, Bharathidasan University, Tiruchirappalli, India. Authors also thank the anonymous reviewers and editors for refining the manuscript.
INTRODUCTION

Estuaries act as transitional zones and support the coastal economy in the form of fishing, aquaculture, transport, and tourism activities. They are also known to be highly productive ecosystems that provide shelter and breeding grounds for various marine aquatic organisms (Nybakken & Bertness 2005). Unlike salt marshes and backwaters, estuaries are complex and highly dynamic and their structure and function are influenced by anthropogenic inputs (e.g., aquaculture, agriculture, and industrial discharges) from the land and get transferred to the sea (Shenai-Tirodkar et al. 2016). Such anthropogenic activities can alter the physicochemical properties of water and immensely influence the migration, richness, distribution, diversity, and feeding of the associated marine aquatic organisms (Unanam & Akpan 2006). Plankton are aggregates of organisms (plants and animals) passively floating, drifting, or somewhat motile occurring in aquatic ecosystems (Lalli & Parsons 1993). Phytoplankton is grazed upon by zooplankton and other higher aquatic organisms (nektons) (Calbet 2008). Nutrient enrichment through, riverine inputs, and discharge from anthropogenic activities can significantly alter the phytoplankton growth and in turn affect the zooplankton grazing pressure (Berdalet et al. 1996). Therefore, plankton assemblages are usually helpful in assessing the water quality as they quickly respond to the environmental changes, hence; act as ecological indicators of an ecosystem (Hays et al. 2005; Longhurst 2007).

In the Indian scenario, most of the estuarine ecosystems are under stress due to natural and anthropogenic inputs from the surrounding environment. With the increase in nearby aquaculture, agricultural, and anthropogenic activities, the effluent discharges find their way into the nearby coastal areas which provides an advantageous environment to the organisms for proliferation. Similar activities have been reported in the Swarnamukhi River Estuary (SRE) region, fewer studies have been carried out to assess the tidal variations (Reddi et al. 1993), hydrographic properties of water (Sreenivasulu et al. 2015), contamination studies on the presence of heavy metal in seawater, sediments, & organisms (Reddy et al. 2016; Sreenivasulu et al. 2018; Jha et al. 2019), and the benthic organisms (Pandey et al. 2021). However, an elaborate study for the plankton communities is not available for the SRE region. A long-term study (2014–2017) was conducted to analyze the planktonic (phytoplankton and zooplankton) assemblages. This study can serve as baseline information for future ecological assessment related to the SRE and other similar tropical ecosystems.

MATERIALS AND METHODS

Study area

The SRE region (14.072–14.077 °N and 80.126–80.154 °E), situated in the Vakadu Mandal of Nellore district, Andhra Pradesh. This estuarine runs about 1.5 km in length perpendicular to the Bay of Bengal with an average depth of 1.0 m and an area of 6.25 km² (Reddi et al. 1993). Nellore receives the majority of the rainfall during the north-east monsoon (October to December) than the south-east monsoon (Kannan et al. 2016). Altogether, five sampling stations were fixed; four stations covering SRE and a reference station in the open sea (OS) about a kilometer from the shore. The coordinates were fixed using GPS (Garmin) covering the study area and the surrounding coast. The selected sampling stations are shown in (Figure 1), covering the Buckingham canal (BC), near to (SR1), away from mouth (SR2), mouth (SRM), and open sea (OS). The monthly sampling was carried out covering low and high tides at all the stations. The data was categorized seasonally as pre-monsoon [PRM (January–May)], monsoon [MON (June–September)], and post-monsoon [POM (October–December)] from May 2014 to December 2017 for analysis (5 stations × 43 months × 2 tides = 430 samples).

Temperature and rainfall

The temperature and rainfall data for the sampling period were obtained from the Indian Meteorological Department, Ministry of Earth Sciences, Government of India. The obtained data (monthly) was plotted for better interpretation (refer to Figure 2).

Biological parameters

For phytoplankton sampling, 5.0 L of surface seawater samples (in triplicate) were collected in a polyethylene container and preserved with 4% formalin and Lugol’s iodine. Phytoplankton analysis was carried out using Utermöhl (1931) sedimentation technique. The samples were allowed to settle in a measuring cylinder for a period of 48 hours and siphoned (using a 10 µ mesh) to obtain 50 mL concentrate (Hasle,1978). For phytoplankton enumeration, 1 mL of the concentrated sample was taken onto a Sedgewick rafter plankton counting chamber and the total number of organisms was examined under a compound microscope. Phytoplankton was identified using standard identification keys (Subrahmanyan...
1946, 1959; Santhanam et al. 1987; Tomas 1997). For chlorophyll-a (chl-a) analysis, 1,000 mL of the water sample was filtered through Whatman GF/F filter paper and chl-a, was extracted by following the modified acetone extraction method (Parson et al. 1984). The extracted chl-a samples were analyzed using a spectrophotometer (make Hitachi model F-4600) and obtained results were expressed in mg/m³. The surface zooplankton samples were collected using a zooplankton net (150 μm mesh size, 0.5 m diameter, 1.8 m length) fitted with a digital flow meter (make Hydro-Bios). The surface hauls were made from the stern side of the boat running at a speed of 1 km/hr and the collected plankton was transferred to 500 mL polythene containers and preserved using 5% buffered formalin. In the laboratory, triplicate subsamples were taken onto a Sedgewick rafter plankton counting chamber and the total numbers of organisms were enumerated under the compound microscope (Nikon model SMZ 1500). The zooplankton was identified following the standard identification key of Kasturirangan (1963) and Santhanam & Srinivasan (1994). The zooplankton biomass was determined by the settled volume method, where the collected sample was allowed to settle and the obtained biomass was expressed as mL/m³.

Statistical analysis

PRIMER v6.1 was used for univariate indices, e.g., species richness (S), abundance, Margalef’s diversity (d), Shannon-Wiener diversity index (H', log₂), Simpson’s diversity (1-λ), and Pielou’s evenness (J') (Clarke & Gorley 2006). The sitewise variation between the environmental parameters were analyzed using one way analysis of variance (ANOVA) in Microsoft Excel 2007. To determine the phytoplankton diversity and dominance in different seasons and the stations, univariate diversity indices were applied. The abundance of phytoplankton and zooplankton was represented using a box plot using SPSS v10 software.
RESULTS AND DISCUSSION

Temperature and rainfall
The rainfall data were analyzed for the years 2014–2017 and it indicates that maximum rainfall was recorded from September to December (Figure 2). It ranged 6.2–221.1 mm (2014), 8.0–767.2 mm (2015), 10.6–149.0 mm (2016), and 1.1–218.0 mm (2017). Maximum rainfall of 767.2 mm was recorded in November 2015. The lowest rainfall was recorded in 2016 during the north-east monsoon (December 149.0 mm). The atmospheric temperature (AT) ranged 22.1–40.2 °C, 21.4–39.7 °C, 22.0–39.5 °C, and 21.8–40.9 °C in 2014, 2015, 2016, and 2017, respectively. The AT peaked during the summer, i.e., April and May. The SRE region is continuously fed with tidal water and keeps the ecosystem comparatively in good condition; however, every year during the MON when the precipitation is less, the mouth of the river gets closed for a few months (Sreenivasulu et al. 2016; Pandey et al. 2021). During this period, the concentration of some of the parameters changed drastically due to stagnation. It has been reported that the rainfall can significantly affect the phytoplankton composition in the river (Jeong et al. 2007), estuaries (D’silva et al. 2012), and reservoirs (Zhou et al., 2012) worldwide.

Phytoplankton diversity, density, and chlorophyll-a
A total of 54 phytoplankton species include 38 diatoms, nine dinoflagellates, three green algae, and four blue-green algae. Diatoms (Bacillariophyceae) were the dominant group consisting of 70%, 69%, and 76% in PRM, MON, and POM, respectively. The next dominant was dinoflagellates (dinophyceae) registering 20%, 14%, and 18%, in PRM, MON, and POM, respectively. Green algae (Cyanophyceae) were recorded during PRM (6%) and MON (7%) seasons. Blue-green algae (Chlorophyceae) were 4%, 10, and 6%, in PRM, MON, and POM, respectively (Figure 3).

During the study period, the highest phytoplankton density was recorded in the SRM (56,410 cells/L) and it was lowest in the OS (2,440 cells/L). Phytoplankton density in the inner riverside stations, BC, SR2, and SR1 ranged 9,605–50,160 cells/L, 7,785–56,340 cells/L, and 10,500–55,850 cells/L, respectively. In SRM and OS, phytoplankton density ranged 10,033–56,410 cells/L and 2,440–37,100 cells/L, respectively. The maximum phytoplankton density recorded in the inner stations BC, SR2, and SR1 were 19,785, 21,005, and 18,815 cells/L, respectively (Figure 4a). In the SRM and OS region, the mean phytoplankton density was 20000 and 17864 cells/L, respectively. The maximum density recorded in PRM, MON, and POM was 56,410, 42,210, and 24,480 cells/L, respectively. The phytoplankton density in PRM ranged 13,647–23,217 cells/L in MON it ranged 18,585–22,746 cells/L, and in POM it ranged 9,492–16,973 cells/L (Figure 4a). Among diatoms, Rhizosolenia sp. was the dominant species in all the stations, followed by Thalassiosira subtilis and Navicula sp. The Protoperdinium sp. dominated the dinoflagellates community followed by Ceratium sp. and Procoenrum sp. during the study period. All the three species of green algae (Chlorella sp., Oocystis sp., and Pediastrum sp.) were present during MON, while only Chlorella sp. and Oocystis sp. were represented during PRM and none of the three species mentioned above were present during POM. Among the four blue-green algae recorded during the study, Trichodesmium sp. and Spirulina sp. were observed during PRM, Microcystis sp. and Oscillatoria sp. were observed during POM, and all the four species were present during the MON. The SRE received precipitation during the POM (north-east monsoon) which could enhance the land-driven run-off from the aqua farms, agricultural land, and domestic discharge which consequently could have attributed higher nutrient inputs helping phytoplankton to proliferate and bloom. Higher phytoplankton density in the inner stations could be attributed to higher nutrient input in those stations from the surrounding regions (aquaculture runoff) (Mckee et al. 2000; Roberts & Prince 2010).

The chl-a in PRM ranged 2.11 ± 0.12 mg/m³ (OS & SRM)–10.71 ± 2.08 mg/m³ (BC). In MON, it ranged 2.10 ± 0.49 mg/m³ (OS)–8.46 ± 1.76 mg/m³ (BC). In POM, it ranged 0.78 ± 0.17 mg/m³ (SRM)–3.41±0.24 mg/m³ (BC) (Figure 4b). The data indicates that the phytoplankton exhibited significant variations between seasons (F= 26.4, p < 0.05), while variation was insignificant between the stations (F= 1.026, p > 0.05). The diversity indices between the five stations did not vary significantly (F= 1.026, p > 0.05). An increase in phytoplankton abundance and chl-a was on par with previous studies observed during the PRM and MON (Achary et al. 2014; Bialiarsingh et al. 2016).

Univariate diversity indices have shown variations between the three different seasons (Table 1). Throughout the study, maximum phytoplankton species were recorded in the BC station in the monsoon (45 species). Marglefs’s species richness (d) was the highest in MON, followed by PRM whereas it was lowest in POM. This could be attributed to the high species diversity in MON compared to the other two seasons. Pielou’s evenness (J’) and Simpson’s dominance (D)
were relatively higher in the PRM and POM compared to the MON season. The relatively low value in MON can be attributed to the high species diversity during this season. In general, the high species dominance in PRM and POM can be related to the low species richness in these seasons. The maximum phytoplankton abundance and chl-a biomass were recorded during the PRM followed by MON season. The highest phytoplankton abundance and biomass was recorded during 2014 and 2015.

Zooplankton density and diversity
A total of 58 different species of zooplankton conforming to nine different phyla, i.e., Sarcomastigophora, Ciliophora, Ctenophora, Cnidaria, Chordata, Chaetognatha, and Arthropoda were recorded. The increased diversity of zooplankton especially the copepods observed in the estuarine region was on par with previous reports from the east coast of India (Madhupratap et al. 1992; Thippeswamy & Malathi 2009). However, the number of copepod taxa
reported during the present survey was comparatively less than previous reports in the Andhra coast (Rakhesh et al. 2006).

In BC, density varied 2,722–82,540 ind./m³. In SR1, it varied 2,871–84,230 ind./m³. In SR2, the density of zooplankton varied 1,645–105,558 ind./m³. In SRM, it varied 7,551–131,579 ind./m³. Similarly, in OS, it varied 1,523–96,872 ind./m³. It was observed that zooplankton density was maximum at SRM (131,579 ind./m³) (Figure 5a). Zooplankton density in PRM, MON, and POM ranged 20,090–29,114 ind./m³, 16,390–24,330 ind./m³, and 13,286–22,426 ind./m³, respectively. Maximum

<table>
<thead>
<tr>
<th>Season</th>
<th>Station</th>
<th>Total species (S)</th>
<th>Total Individuals (N)</th>
<th>Marglef's species richness (d)</th>
<th>Pielou's evenness (J')</th>
<th>Shannon Wiener Diversity index (H')</th>
<th>Simpson's dominance (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRM</td>
<td>BC</td>
<td>36</td>
<td>23217</td>
<td>3.27</td>
<td>0.93</td>
<td>3.36</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>SR2</td>
<td>35</td>
<td>22493</td>
<td>3.13</td>
<td>0.91</td>
<td>3.25</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td>SR1</td>
<td>36</td>
<td>18980</td>
<td>3.26</td>
<td>0.93</td>
<td>3.35</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>SRM</td>
<td>35</td>
<td>21054</td>
<td>3.16</td>
<td>0.93</td>
<td>3.34</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>OS</td>
<td>35</td>
<td>13647</td>
<td>3.28</td>
<td>0.91</td>
<td>3.25</td>
<td>0.95</td>
</tr>
</tbody>
</table>

MON	BC	45	22746	4.54	0.71	2.70	0.87
	SR2	40	22409	3.99	0.73	2.72	0.87
	SR1	41	18585	4.15	0.73	2.71	0.88
	SRM	42	20040	4.12	0.82	3.09	0.93
	OS	41	18906	3.90	0.78	2.90	0.91

POM	BC	30	14959	3.05	0.88	2.99	0.93
	SR2	27	16378	2.75	0.92	3.05	0.94
	SR1	29	10521	3.03	0.92	3.11	0.94
	SRM	29	16973	2.94	0.91	3.07	0.94
	OS	18	9492	1.87	0.91	2.64	0.90

<table>
<thead>
<tr>
<th>Season</th>
<th>Station</th>
<th>Total species (S)</th>
<th>Total Individuals (N)</th>
<th>Marglef's species richness (d)</th>
<th>Pielou's evenness (J')</th>
<th>Shannon Wiener Diversity index (H')</th>
<th>Simpson's dominance (D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRM</td>
<td>BC</td>
<td>19</td>
<td>27100</td>
<td>1.759</td>
<td>0.7223</td>
<td>2.13</td>
<td>0.8415</td>
</tr>
<tr>
<td></td>
<td>SR2</td>
<td>19</td>
<td>27793</td>
<td>1.828</td>
<td>0.7863</td>
<td>2.32</td>
<td>0.8749</td>
</tr>
<tr>
<td></td>
<td>SR1</td>
<td>19</td>
<td>26655</td>
<td>1.874</td>
<td>0.7829</td>
<td>2.31</td>
<td>0.8615</td>
</tr>
<tr>
<td></td>
<td>SRM</td>
<td>19</td>
<td>29114</td>
<td>1.827</td>
<td>0.7811</td>
<td>2.30</td>
<td>0.8694</td>
</tr>
<tr>
<td></td>
<td>OS</td>
<td>19</td>
<td>20090</td>
<td>1.873</td>
<td>0.7468</td>
<td>2.20</td>
<td>0.8447</td>
</tr>
</tbody>
</table>

MON	BC	23	24006	2.306	0.7836	2.46	0.8493
	SR2	21	16390	2.057	0.7903	2.41	0.8460
	SR1	19	24330	1.932	0.7172	2.11	0.7880
	SRM	22	21521	2.019	0.6835	2.11	0.8170
	OS	19	16691	1.793	0.5965	1.76	0.6701

POM	BC	16	16576	1.463	0.5105	1.42	0.5485
	SR2	9	22426	0.714	0.2415	0.53	0.2313
	SR1	8	14828	0.783	0.6151	1.28	0.6249
	SRM	14	19619	1.184	0.4009	1.06	0.4726
	OS	13	13286	1.045	0.3664	0.94	0.3983
zooplankton abundance was observed during PRM followed by MON and POM during the study period. The OS recorded the least abundance throughout the seasons (PRM: 20,091 ind./m3, MON: 16,390 ind./m3 & POM: 13,286 ind./m3, respectively). Maximum zooplankton biomass was observed in SR2 ranging from 0.04 to 0.13 ml/m3 throughout the study period (Figure 5b). OS recorded the least biomass (0.02 to 0.04 ml/m3) throughout the sampling period. Overall PRM followed by MON season exhibited favourable conditions for zooplankton growth in the SRE region.

Zooplankton exhibited a typical season-specific
and site-specific variation. Copepods followed by invertebrate larval forms dominated the zooplankton community during all three seasons. A total of 37 species of copepods were recorded during the survey, with the major species being *Acartia danae*, *A. spinicauda*, *A. clausii*, *Paracalanus parvus*, *Acrocalanus gibber*, *A. longicornis*, *Corycaeus danae*, *C. catus*, *Oithona rigida*, and *Euterpina acutifrons* were recorded throughout the year irrespective of seasons. Copepods followed by larval forms dominate the entire zooplankton community irrespective of seasons (Figure 6). The least contributing groups (less than 10%) include organisms belonging to phyla/group Sarcomastigophora, Ciliophora, Ctenophora, Cnidaria, Chordata, Chaetognatha, and Annelida. Copepod species such as *Eucalanus* sp., *Subeucalanus* sp., *Onacaea* sp., *Centropages* sp., and *Copilia* sp. were present only during POM season in higher numbers in all stations which correlates with the lowering salinity in all stations due to the north-east monsoon. Apart from the copepods, some other larval forms exhibited seasonality such as bivalve (PRM and MON) and gastropod veligers (MON and POM). Larval forms belonging to phylum Mollusca, e.g., *Creisis* sp. and the Ophiothrix larva were exclusively present only in monsoon. Copepod nauplius, crustacean nauplius, and polychaete larvae were present throughout the year in all the stations.

Univariate diversity indices have shown variations between the three seasons (Table 2). Marglef’s species richness (d) was the highest in MON, followed by PRM and POM. Among the five stations, a significant difference in the diversity indices was observed during the POM. BC region was more diverse and recorded maximum zooplankton species (19–23). This could be attributed to anthropogenic activities in the surrounding environment (Pandey et al. 2021).

The zooplankton community exhibited significant differences between the seasons (F= 191.1, p <0.001) as well as the stations (F= 224.5, p <0.001). The present investigation has shown the presence of discrete assemblages of zooplankton communities observed in the SRE and coastal region indicating a strong seasonal fluctuation with lower abundances in POM and higher during the PRM and MON season. A similar study conducted elsewhere suggested that phytoplankton abundance plays a very important role in regulating zooplankton population in estuaries (Jagadeesan et al. 2013; Nandy & Mandal 2020).

The coast is prone to heavy rainfall, the likely discharges from the nearby aquaculture activities in the inner stations (BC, SR2, and SR1) of the SRE region which was supported with previous studies (Sreenivasulu et al. 2018). The results of this study are in agreement with Jha et al. (2019) and Pandey et al. (2021) in the same region.

CONCLUSION

The present long-term study reveals the spatial and temporal variations of phytoplankton and zooplankton in the SRE and the adjoining coast. The study also
highlights that the SRE region receives very little rainfall during the MON period and most of the rainfall occurred only during the POM period, i.e., during the north-east monsoon (NEM) period. The SRE region is known to have a good cover of mangroves swamps and is usually impacted by anthropogenic activities, such as, aquaculture farms, agriculture activities, and discharge areas from nearby vicinity. The increased nutrient concentration significantly affected the plankton community in the SRE region. Our study indicates that the phytoplankton community exhibited significant variations between seasons. The zooplankton density also showed significant variation and revealed the anthropogenic impact in the study. The present study suggests that phytoplankton and zooplankton are important indicators of a healthy ecosystem which was evident in the present study. Moreover, the study also suggests that a long-term monitoring could help in understanding the ecosystem and planning the mitigation management strategy for the tropical coastal environment.

REFERENCES

Plankton diversity of Swarnamukhi River estuary

Author details: KR—Participation in sampling, analysis, writing the original draft; VPLM—Participation in sample analysis; DKJ—Participation in sampling, critical review, commentary or revision – including pre-or post-publication stages; GD—Coordination of the study and leadership responsibility for the research activity planning and execution; MPD—Statistical analysis of the data, guidance and mentorship.
Dr. Himender Bharti, Punjab University, Punjab, India
Dr. Purnendu Roy, London, UK
Dr. Saito Motoki, The Butterfly Society of Japan, Tokyo, Japan
Dr. Jayaprakash, Punjab University, Chandigarh, India
Dr. B.K. Nair, Indian Council of Agricultural Research, New Delhi, India
Dr. Shiva Sethuraman, University of Arizona, Tucson, USA
Dr. Sudhanshu Pandey, M.S. University, Vellore, Tamil Nadu, India
Dr. Ashok Vaidya, M.S. University, Vellore, Tamil Nadu, India
Dr. Monil Parmar, Gujarat National University, Surat, India
Dr. Pushpa Kumari, University of Allahabad, Allahabad, India
Dr. K. Donato, University of Calabria, Cosenza, Italy
Dr. Y. Haldeman, University of Wisconsin, Madison, USA
Dr. Raj K. Deshmukh, Mahatma Phule Krishi Vidyapeeth, M.P., India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Dr. B. Chatterjee, Jadavpur University, Kolkata, West Bengal, India

Birds

Dr. Hem Sagar Baral, Charles Sturt University, NSW Australia
Dr. Chris Bowden, Royal Society for the Protection of Birds, Sandy, UK
Dr. Priya Davidar, Pondicherry University, Kalapet, Puducherry, India
Dr. J.W. Duszkowski, IUCN SSC, Bath, UK
Dr. Raju Jayapal, SACC, Coimbatore, Tamil Nadu, India
Dr. Rajveer S. Khali, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. V. Santharam, Rishi Valley Education Centre, Chittur, Andhra Pradesh, India
Dr. S. Balachandran, Bombay Natural History Society, Mumbai, India
Dr. M. Praveen, Bengaluru, India
Dr. C. Sinivasulu, Osmania University, Hyderabad, India
Dr. K.S. Gopi Sundar, International Crane Foundation, Baraboo, USA
Dr. Gombobatar Sundev, Professor of Ornithology, Ulaanbaatar, Mongolia
Prof. Reuven Yosef, International Birding & Research Centre, Eilat, Israel
Dr. Taej Mundkur, Wetlands International, The Netherlands
Dr. Carol Inkipp, Bishop Auckland Co., Durham, UK
Dr. Tim Inkipp, Bishop Auckland Co., Durham, UK
Dr. V. Gokula, National Council, Tiruchirappalli, Tamil Nadu, India
Dr. Arkady Leje, Russian Academy of Sciences, Vladivostok, Russia
Dr. Simon Dowell, Science Director, Chester Zoo, UK
Dr. Mário Gabriel Santos da Soy, Universidade de Trás-os-Montes e Alto Douro, Quinta de Prados, Vila Real, Portugal
Dr. Grant Conee, Smithsonian Institution, Royal VA, USA
Dr. M. Zafar-ul Islam, Prince Saud Al Faisal Wildlife Research Center, Taif, Saudi Arabia

Mammals

Dr. Giovanni Amori, CNR - Institute of Ecosystem Studies, Rome, Italy
Dr. Anwaruddin Chowdhury, Guwahati, India
Dr. David Malion, Zoological Society of London, UK
Dr. Shomita Mukherjee, SACC, Coimbatore, Tamil Nadu, India
Dr. Angie Appel, Wild Cat Network, Germany
Dr. Mandar S. Paingankar, University of Pune, Pune, Maharashtra, India
Dr. Susan Cheyne, Borneo Nature Foundation International, Palangkaraya, Indonesia
Dr. David Mallon, Zoological Society of London, UK
Dr. Lala A.K. Singh, Bhubaneswar, Orissa, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Neelish Dharaiya, HNG University, Patan, Gujarat, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India
Dr. Anju Appel, Wild Cat Network, Germany
Dr. Paul Racey, University of Exeter, Devon, UK
Dr. Honnava N. Kumara, SACC, Anakattu P.O., Coimbatore, Tamil Nadu, India
Mr. J. Praveen, Bengaluru, India

Amphibians

Dr. Neelish Dharaiya, HNG University, Patan, Gujarat, India
Dr. Nishith Dharaiya, HNG University, Patan, Gujarat, India
Dr. Rajiv S. Kalsi, M.L.N. College, Yamuna Nagar, Haryana, India

Reptiles

Dr. Gernot Vogel, Heidelberg, Germany
Dr. Raju Vyas, Vadodara, Gujarat, India
Dr. Pratap S. Soorae, Environment Agency, Abu Dhabi, UAE.
Prof. Dr. Wayne J. Fuller, Near East University, Mersin, Turkey
Prof. Chandrashekar U. Rinkar, Goa University, Taleigao Plateau, Goa, India
Dr. S.R. Ganesh, Chennai, Tamil Nadu, India
Dr. Himansu Sekhar Das, Terrestrial & Marine Biodiversity, Abu Dhabi, UAE

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.
A checklist of dragonflies & damselflies (Insecta: Odonata) of Kerala, India
– Akshay Dalvi & Yogesh Koli, Pp. 20648–20653

Merogomphus tamaracherriensis
First record and description of female (Lepidoptera: Crambidae: Spilomelinae) distributed in Asia and Australia

Pygospila tyres (Cramer, 1780)
First Indian DNA barcode record for the moth species

Platerus pilcheri Distant (Hemiptera: Reduviidae), a forgotten assassin
Rediscovery of from India, with the description of a new species
– Zakir Hussain Najar, Bilal A. Bhat & Riyaz Ahmad, Pp. 20680–20682

Cotesia anthelea (Wilkinson, 1928) (Hymenoptera: Braconidae) a natural parasitoid of Cirrochroa thais (Fabricius, 1787) (Lepidoptera: Nymphalidae), first report from the Oriental region
– Ankita Gupta & P. Manoj, Pp. 20683–20685

Melastoma imbricatum Wall. ex Triana (Melastomataceae): a new addition to the flora of Manipur, India

Geodorum laxiflorum Griff. (Orchidaceae), a new distribution record for Maharashtra state of India
– Ashish Ravindra Bhoyar, Swapnil Nandgaye, Syed Abrar Ahmed & Saduram Madavi, Pp. 20689–20691

Photographic record of Armillaria mellea a bioluminescent fungus from Lonavala in Western Ghats, India

Notes

First photographic evidence of Asiatic Black Bear Ursus thibetanus in Kaziranga Tiger Reserve, India
– Priyanka Borah, Jyotish Ranjan Deka, Mujahid Ahmad, Rabindra Sharma, Ruchi Badola & Syed Anil Hussain, Pp. 20677–20679

First record of Small Minivet Pericrocotus cinnamonus (Aves: Passeriformes: Campophagidae) from Kashmir, India
– Zakir Hussain Najar, Bilal A. Bhat & Riyaz Ahmad, Pp. 20680–20682

Response & Reply

Correction to Catalogue of herpetological specimens from Meghalaya, India at the Sálim Ali Centre for Ornithology and Natural History (SACON)
– Pandi Karthik, Pp. 20695–20697

Reply to the "Correction to Catalogue of herpetological specimens from Meghalaya, India at the Sálim Ali Centre for Ornithology and Natural History (SACON)" by P. Karthik

Book Review

Conservation Kaleidoscope: People, Protected Areas and Wildlife in Contemporary India

Publisher & Host

Threatened Taxa

The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

February 2022 | Vol. 14 | No. 2 | Pages: 20539–20702

Date of Publication: 26 February 2022 (Online & Print)

DOI: 10.11609/jott.2022.14.2.20539-20702