New distribution record of a true coral species, *Psammocora contigua* (Esper, 1794) from Gulf of Kachchh Marine National Park & Sanctuary, India

R. Chandran 1, R. Senthil Kumaran 2, D.T. Vasavada 3, N.N. Joshi 4 & Osman G. Husen 5

1-4 Marine National Park & Sanctuary, Forest Colony, Jamnagar, Gujarat 361001, India.
3 Sikka-Range Forest office, MNP&S, Gakat Naka, Sikka, Gujarat 361141, India.
1 chandranretnaraj@gmail.com (corresponding author), 2 senthil ifs@gmail.com, 3 dtvasavada@yahoo.com, 4 rfojoshi@yahoo.com, 5 husengadh4796@gmail.com

Abstract: Reef-building corals are generally confined to tropical waters across the world oceans. But some coral species are able to tolerate even inhospitable environments and suboptimal extremes, and form lower diversity reefs habitats such as the Gulf of Kachchh, located along the northwestern coast of India. Among the reported hard coral species so far from the Gulf of Kachchh, genus *Psammocora* is represented by only one species, *P. digitata*. The present study confirmed a new distribution record of *Psammocora contigua* from Narara Island. Due to the changing hydro-geographic conditions in the Kachchh region, ramose and branching coral species have been believed to be extinct completely, leaving no sign of live colonies. *P. contigua*, recorded during the present study is the only living species with ramose growth form recorded so far from the Kachchh waters. The present study also holds out hope to record more new coral species records from the region.

Keywords: New coral distribution, Gulf of Kachchh, Narara, *Psammocora*, marginalized reef.

Contributing much in designing, building, and maintaining coral reef habitats in the marine realms, scleractinian corals are often considered as ‘ecosystem engineers’. Although these corals are widely distributed throughout the world’s seas and deeper ocean environments, reef-building coral species are particularly live in shallow tropical and subtropical seas only. The distribution of corals in the world’s oceans generally is confined in two distinct regions; the wider Caribbean (Atlantic Ocean) and the Indo-Pacific (from eastern Africa and the Red Sea to the Central Pacific Ocean) (Veron 1995). As updated by Hoeksema & Cairns (2019), a total of 1,625 coral species have been reported from the seas around the world. Among them, at least 900 extant hermatypic scleractinian species (Wallace 1999; Veron 2000) and at least 707 ahermatypic species (Cairns 1999; Tenjing et al. 2019) are recorded. The diversity of coral species is far greater in the Indo-Pacific than in the Atlantic region; the Atlantic amount to only 1/20th of the number to be found in the Indo-Pacific waters (Veron 1995; Spalding et al. 2001). In most parts of the world, the species richness of coral reefs increases towards the equator, particularly the ‘Coral Triangle’ region, the ‘epicentre’ of the richest coral biodiversity (Veron et al. 2015). From this epicenter, the species richness of corals decreases towards latitudes and eastern and western realms. It is astounding to note that not a single coral species is common to both of the Indo-Pacific and the...
Atlantic Ocean regions of the world (Veron et al. 2015). Reef-building corals prefer to grow best in shallow, clear waters that are poor in nutrients, annual water temperature ranges from 23°C to 29°C and a stable salinity range of 27–38 ppt (Achituv & Dubinsky 1990). Because of these strict environmental restrictions, reef-building corals are generally confined to tropical waters. But some coral species are able to tolerate inhospitable environments, sub-optimal extremes and form lower diversity reefs habitats. To a limited extent, corals of those environments can adapt to ambient conditions; consequently, the upper lethal temperature for a species in the tropics will be higher than that of the same species in the subtropics (Camp et al. 2018).

Marginalized reefs distribution in the Gulf of Kachchh, along the northwestern coast of India includes sturdy reef assemblages that are adapted to thrive in extreme environmental conditions.

Coral reefs of the Kachchh are scanty and less diverse when compared with other major coral reef regions of India. The meagerness is explained due to the transgression of the sea levels of the Late Pleistocene-Holocene period and the upliftment of tectonic plates of the Gulf (Srivastava 1965). In addition, the prevailing arid climate and the semi-diurnal tidal amplitude fluctuations imply in water quality and heavy sediment depositions on coral reefs hamper their recovery to a healthy state (Michael et al. 2009). Residual coral species living today are quite distinctive in terms of their isolation and their high degree of adaptation to survive in such extreme oceanographic and climatic conditions (Dixit et al. 2010). The water in the Kachchh is murky almost throughout the year and possibilities for exploring sub-tidal reefs is only hardly possible. The distribution of corals in the Gulf is restricted mostly to fore-reefs, edges of reef flats and, inter-tidal pools to reef flats for some extent. So, most studies on coral species diversity and distribution in the Gulf carried out so far were from the low-tide exposed reefs only. A total of 63 hard coral species belonging to 28 genera, under 11 families have been recorded so far from the Gulf of Kachchh (Satyanarayana et al. 2018). Among them, the genus Psammocora is represented by only one species, _P. digitata_. _Psammocora_ (Dana, 1846) is an Indo-Pacific coral genus, presently comprised of 11 nominal species in the monotypic family Psammocoridae (WoRMS 2020).

Species of this genus have highly plastic branching growth forms and exhibit considerable structural complexity in skeletal features (Benzoni et al. 2007). This report confirms the first occurrence of another species of _Psammocora_ in the Gulf of Kachchh reefs.
Corallite walls are indistinct. Calice diameter measured up to 0.789 mm and fossa diameter up to 0.184 mm. Columella was made of a group of pinnules (Image 2d) and measured maximum up to 0.131 mm in diameter. Septal margins with spiny process tend to arrange in whorls along their length. In most of the corallites, eight septa reach the fossa and four of them are petaloid. Maximum length of the petaloid septa reaching the fossa up to 0.302 mm and width up to 0.118 mm. Non-petaloid septa reaching the fossa measured up to 0.105 mm wide. Likewise, enclosed petaloid septa measured up to 0.235 mm wide and 0.392 mm long.

Series of calices often form and can be up to more than 25 calices long in diameter and following the branch growth direction. Distance between two calices within the same row ranges 0.9–1.2 mm.; the nearest calices of two parallel rows were 2.2–7.7 mm apart from each other. Up to eight rows of enclosed petaloid septa were found between series of corallites. In most of the corallite, one triplet septa (three septa fusing together) and two duplets (two septa fusing together) reaching fossa were observed. Synapticulothecal wall surrounds calices and rows of enclosed septa were seen in many places of the colony surface. Recorded taxonomic characters of the specimen (Table 1) agreed with the description of *Psammocora contigua* (Esper, 1794).

DISCUSSION

Psammocora Dana, 1846, is an Indo-Pacific coral genus, presently comprised of 11 nominal species in the monotypic family Psammocoridae (WoRMS 2020). Geographical distribution of the genus extending to high latitudes in both south and north hemispheres, and from the Red Sea and eastern Africa to eastern Pacific shores (Stefani et al. 2008). The Gulf of Kachchh is also located in a marginalized region and proximate to the Red Sea and Arabian Gulf, as their distribution range. Species of this genus have highly plastic branching growth forms and exhibit considerable structural complexity in skeletal features (Benzoni et al. 2007).

All the taxonomical characters of the examined coral colony, in fact, are agreed with the species *P. obtusangula*. The species *P. obtusangula* was considered a valid species by Glynn & Wellington (1983), Veron (2000), and Reyes-Bonilla (2002). Some studies also claimed it a close synonym of *P. contigua* (Veron & Pichon 1976; Faure 1982; Scheer & Pillai 1983) mentioning phenotypic plasticity as the main factor for their morphological variability. But, Stefani et al. (2008) demonstrated the overlapping morphological and molecular characters of *P. obtusangula* and *P. contigua* and synonymized the earlier with later. Hence the Kachchh specimen examined is identified as the species.
Psammocora contigua. Variation in branching morphology is the main character for considering them as two different species. Branches of *P. obtusangula* are small flattened whereas, in *P. contigua*, the branches are flat and larger. But the variation in branching may be due to the habitats they inhabit. A coral transplantation experiment also suggested that *P. obtusangula* is likely to be a shallow, agitated water form of *P. contigua* only (Hoffmeister 1925). Corals of the Gulf of Kachchh are always a puzzle to taxonomists, as the morphology and growth forms vary due to the existing sedimentation, tidal amplitude, and water current. The same might be the reason for variation in the growth form of the present specimen.

Among the recorded coral species so far from the Kachchh waters, *Pocillopora damicornis*, *Acropora humilis*, *A. squarrosa*, *A. microphthalmia* are the species having ramose or branching growth forms (Satyanarayana & Ramakrishna 2009). But all these species are presently considered locally extinct with not even a single live colony recorded since the recent past. So, *P. contigua* is the only living species with somewhat ramose growth form recorded so far from the Kachchh waters.

A total of eight species of corals belonging to the genus *Psammocora* have been recorded so far from India.

Table 1. Recorded morphometrical characters of the examined specimen, *P. contigua* from Gulf of Kachchh.

<table>
<thead>
<tr>
<th>Morphological Characters of Corallites & branches</th>
<th>Morphometry (in mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Calice diameter</td>
<td>0.750-0.789</td>
</tr>
<tr>
<td>2 Fossa diameter</td>
<td>0.157-0.184</td>
</tr>
<tr>
<td>3 Columella diameter</td>
<td>0.105-0.131</td>
</tr>
<tr>
<td>4 Maximum width of petaloid septa Reaching the fossa</td>
<td>0.118</td>
</tr>
<tr>
<td>5 Maximum length of petaloid septa Reaching the fossa</td>
<td>0.302</td>
</tr>
<tr>
<td>6 Maximum thickness of non-petaloid septa</td>
<td>0.105</td>
</tr>
<tr>
<td>7 Maximum width of enclosed petaloid septa</td>
<td>0.235</td>
</tr>
<tr>
<td>8 Maximum length of enclosed petaloid septa</td>
<td>0.392</td>
</tr>
<tr>
<td>9 Total branch height</td>
<td>Up to 28.92</td>
</tr>
<tr>
<td>10 Height of the distal portion of the branch</td>
<td>12.27</td>
</tr>
<tr>
<td>11 Minimum distance between the distal portions of the branch</td>
<td>1.14-2.51</td>
</tr>
<tr>
<td>12 Maximum width of the basal part of the branch (m-12)</td>
<td>23.0</td>
</tr>
<tr>
<td>13 Minimum width of the basal part of the branch perpendicular to m12</td>
<td>4.97</td>
</tr>
<tr>
<td>14 Maximum width of the distal portion of the branch (m-14)</td>
<td>46.40</td>
</tr>
<tr>
<td>15 Maximum width of the branch perpendicular to m14</td>
<td>19.20-25.0</td>
</tr>
<tr>
<td>16 Minimum width of the distal portion of the branch perpendicular to m14</td>
<td>2.78</td>
</tr>
</tbody>
</table>

Table 2. List of coral species belonging to the genus *Psammocora* reported so far from Indian waters.

<table>
<thead>
<tr>
<th>Species</th>
<th>Location of report</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Psammocora contigua</td>
<td>Lakshadweep</td>
<td>Pillai 1967</td>
</tr>
<tr>
<td></td>
<td>Gulf of Mannar</td>
<td>Pillai 1986</td>
</tr>
<tr>
<td></td>
<td>Andaman & Nicobar</td>
<td>Venkataraman et al. 2012</td>
</tr>
<tr>
<td>2 P. digitata</td>
<td>Gulf of Kachchh</td>
<td>Satyanarayana & Ramakrishna, 2009; Pillai & Patel 1988</td>
</tr>
<tr>
<td></td>
<td>Lakshadweep</td>
<td>Pillai & Jasmine 1989</td>
</tr>
<tr>
<td>3 P. explanulata</td>
<td>Andaman & Nicobar</td>
<td>Venkataraman et al. 2012</td>
</tr>
<tr>
<td>4 P. haianza</td>
<td>Lakshadweep</td>
<td>Pillai 1971</td>
</tr>
<tr>
<td></td>
<td>Andaman & Nicobar</td>
<td>Venkataraman et al. 2012</td>
</tr>
<tr>
<td>5 P. nierstraszi</td>
<td>Lakshadweep</td>
<td>Suresh 1991</td>
</tr>
<tr>
<td>6 P. obtusangula</td>
<td>Andaman & Nicobar</td>
<td>Raghuraman et al., 2012</td>
</tr>
<tr>
<td>7 P. profundacella</td>
<td>Lakshadweep</td>
<td>Pillai & Jasmine 1989</td>
</tr>
<tr>
<td></td>
<td>Andaman & Nicobar</td>
<td>Venkataraman et al. 2012</td>
</tr>
<tr>
<td>8 P. superficialis</td>
<td>Andaman & Nicobar</td>
<td>Venkataraman et al. 2012</td>
</tr>
<tr>
<td>9 P. vaughani</td>
<td>Andaman & Nicobar</td>
<td>Mondal et al. 2015</td>
</tr>
</tbody>
</table>
A maximum of seven species were recorded from Andaman & Nicobar followed by Lakshadweep islands (five species). *P. contigua* has been previously reported from the Gulf of Mannar (Pillai 1986), Lakshadweep (Pillai 1967), and Andaman & Nicobar Island (Venkataraman et al. 2012). But *P. obtusangula* was only listed out in a checklist of coral species from Andaman & Nicobar islands by Raghuraman et al. (2012). Among the recorded 64 coral species so far from Gulf of Kachchh, the genus *Psammocora* is represented by only one species, *P. digitata* (Pillai & Patel 1988; Satyanarayana & Ramakrishna 2009). The present study adds one more species of corals to the Gulf of Kachchh corals biodiversity. This species distribution was recorded previously from Australia, Indonesia, Singapore, Malaysia, Taiwan, Papua New Guinea, Viet Nam, Thailand, Philippines, Micronesia, Palau, Marshall Islands, Mayotte, Maldives, Japan, New Caledonia, Réunion, Iran, Guam, Yemen, Bahrain, Vanuatu, French Polynesia, Kenya, Ecuador, Kuwait, Seychelles, Fiji, Christmas Island, American Samoa, Pitcairns, Kribati, USA, and Madagascar (Veron et al. 2016). Veron et al. (2016) also strongly predicted the distribution of *P. contigua* all along the western coast of India, including the Gulf of Kachchh. The present study confirmed their prediction by recording the species in the Gulf of Kachchh.

This species is also classified under ‘IUCN Near Threatened’ category (IUCN 2020). In the Gulf of Kachchh, the species distribution was rarely encountered at a low-tide exposed reef edge in the eastern side of Narara Island, and their distribution is recorded nowhere else in the Gulf of Kachchh reefs. Even at the recorded reef site also, a small patch of around 8–10 colonies was only observed. A detailed study needs to be carried out along the Kachchh reefs to record their actual distribution. Attempts with the aid of the latest technologies to explore the sub-tidal reefs may yield a greater number of coral species from the isolated reefs of the Gulf of Kachchh.

REFERENCES

Distribution record of Psammocora contigua from Gulf of Kachchh MNP&S.

Communications

Updated distribution of seven Trichosanthes L. (Cucurbitales: Cucurbitaceae) taxa in India, along with taxonomic notes
Kanakasabapathi Pradheep, Soymichiten, Ganjalagatta Dasaiah Harish, Mohammed Abdul Nizar, Kailash Chandra Bhatt, Anjula Pandey & Sudhir Pal Ahiawat, Pp. 20143–20152

Dragonflies and Damselflies (Insecta: Odonata) of Aryanad Grama Panchayat, Kerala, India
– Reji Chandran & A. Vivek Chandran, Pp. 20153–20166

Checklist of Odonata (Insecta) of Doon Valley, Uttarakhand, India
– Kritish De, Sarika Bhatt, Amar Paul Singh, Manisha Uniyal & Virendra Prasad Uniyal, Pp. 20167–20173

Diversity of moths from the urban set-up of Valmiki Nagar, Chennai, India
– Vikas Madhav Nagarajan, Rohith Srinivasan & Mahathi Narayanaswamy, Pp. 20174–20189

Ichtjyofanal diversity with relation to environmental variables in the snow-fed Tamor River of eastern Nepal

Observations on the foraging behavior of Tricoloured Munia Lonchura malacca (Linnaeus, 1766) and its interaction with pearl millet fields in Villupuram District, Tamil Nadu, India
– M. Pandian, Pp. 20201–20208

Roosting patterns of House Sparrow Passer domesticus Linn., 1758 (Aves: Passeridae) in Bhavnagar, Gujarat, India
– Foram P. Patel & Pravinpsng P. Dodia, Pp. 20209–20217

Review

Comprehensive checklist of algal class Chlorophyceae (sensu Fritsch, 1935) for Uttar Pradesh, India, with updated taxonomic status
– Sushma Verma, Kiran Toppo & Sanjeeva Nayaka, Pp. 20218–20248

View Point

Wildlife managers ignore previous knowledge at great risk: the case of Rivaldo, the iconic wild Asian Elephant Elephas maximus L. of the Sigur Region, Nilgiri Biosphere Reserve, India
– Jean-Philippe Puyravaud & Priya Davidar, Pp. 20249–20252

Short Communications

Diversity and distribution of macro lichens from Kalpetta Municipality of Wayanad District, Kerala, India

Extened distribution of two endemic epiphytes from the Western Ghats to the Deccan Plateau
– Sonali Vishnu Deore, Mangala Dala Sonawane & Sharad Suresh Kambale, Pp. 20258–20260

Nomenclatural notes and report of Boehmeria penduliflora Wedd. ex D.G. Long from the Terai region of Uttar Pradesh, India
– Arnit Gupta, Imtiyaz Ahmad Hurrah, Aparna Shukla & Vijay V. Wagh, Pp. 20261–20265

New distribution record of a true coral species, Psammocora contigua (Esper, 1794) from Gulf of Kachchh Marine National Park & Sanctuary, India

A new species of flat-headed mayfly Afronurus meenmutti (Ephemeroptera: Heptageniidae: Ecdyonurinae) from Kerala, India
– Marimuthu Muthukatturajja & Chellaiah Balasubramanian, Pp. 20272–20277

Photographic record of Dhores predating on a young Banteng in southwestern Java, Indonesia

Latrine site and its use pattern by Large Indian Civet Viverra zibetha Linnaeus, 1758: record from camera trap
– Bhuvan Singh Bist, Prashant Ghimire, Basant Sharma, Chiranjeevi Khanal & Anoj Subedi, Pp. 20284–20287

Notes

Two additions to the flora of Kerala, India
– P. Murugan, Basil Paul & M. Sulaiman, Pp. 20288–20291

Pentatropis R.Br. ex Wight & Arn. (Apocynaceae), a new generic record for Kerala, India
– V. Ambika, Jose Sojan & V. Suresh, Pp. 20292–20294

New record of Kashmir Birch Mouse Sicista concolor leathemi (Rodentia: Sminthidae) from the Indian Himalaya
– S.S. Talmale, Avtar Kaur Sidhu & Uttam Saikia, Pp. 20295–20298

Breeding record of Black-headed Ibis Threskiornis melanoleucus (Aves: Threskiornithidae) at Mavoor wetland, Kozhikode District, Kerala, India
– C.T. Shifa, Pp. 20299–20301

Response

Crop and property damage caused by Purple-faced Langurs Trachypithecus vetulus (Mammalia: Primates: Cercopithecidae)
– Vincent Nijman, Pp. 20302–20306

Reply

If habitat heterogeneity is effective for conservation of butterflies in urban landscapes of Delhi, India? Unethical publication based on data manipulation: Response of original authors
– Monalisaa Paul & Aisha Sultana, Pp. 20307–20308

Book Review

Freshwater fishes of the Arabian Peninsula
– Rajeev Raghavan, Pp. 20309–20310