EDITORs

Founder & Chief Editor
Dr. Sanjay Molur
Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZO0),
12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, India

Deputy Chief Editor
Dr. Neellesh Dahanukar
Noida, Uttar Pradesh, India

Managing Editor
Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India

Associate Editors
Dr. Mandar Paingankar, Government Science College Gadchiroli, Maharashtra 442605, India
Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA
Ms. Priyanka Iyer, WILD/ZOO, Coimbatore, Tamil Nadu 641035, India
Dr. B.A. Daniel, WILD/ZOO, Coimbatore, Tamil Nadu 641035, India

Editorial Board
Dr. Russel Mittermeier
Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA

Prof. Mowa Singh Ph.D., FASc, FNA, FNASC, FNAPsy
Ramanna Fellow and Life Long Distinguished Professor, Biopsychology Laboratory, and
Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Honorary
Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore; and
Adjunct Professor, National Institute of Advanced Studies, Bangalore

Stephen D. Nash
Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Science
Centre, T-B, Room 045, Stony Brooke University, Stony Brook, NY 11794-8081, USA

Dr. Fred Plurthoro
Toronto, Canada

Dr. Priya Davdaed
Sigur Nature Trust, Chadapatt, Mannivala PO, Nilgiris, Tamil Nadu 643223, India

Dr. Martin Fisher
Senior Associate Professor, Battenock Centre for Experimental Astrophysics, Cavendish
Laboratory, SI Thomson Avenue, Cambridge CB3 0HE, UK

Dr. John Fallowes
Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The University of
Hong Kong, Pokfulam Road, Hong Kong

Prof. Dr. Mirco Solé
Universidad Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice-coordenador
do Programa de Pós-Graduação em Zoologia, Rodovia Iheyu/Itabuna, Km 16 (45662-002)
Salobrinho, Ilhéus - Bahia - Brasil

Dr. Rajeev Raghavan
Professor of taxonomy, Kerala University of Fisheries & Ocean Studies, Kochi, Kerala, India

Dr. Vijayasankar Raman, University of Mississippi, USA

Mrs. Mita Bhujwani, Pune, India

Dr. Fred Plurthoro, Toronto, Canada

Mr. P. Ilango, Chennai, India

Web Development
Mrs. Smriti G. Ravikumar, ZOO/WILD, Coimbatore, India

Typesetting
Mr. Arul Jagadish, ZOO, Coimbatore, India

Mrs. Radhika, ZOO, Coimbatore, India

Mrs. Geetha, ZOO, Coimbatore, India

Mrs. Payal B. Molur, Coimbatore, India

Subject Editors 2019–2021

Fungi

Dr. B. Shivaraaj, Bengaluru, Karnataka, India
Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India
Dr. P.S. Jha, National University of Singapore, Singapore, India
Dr. M. Krishna, Madurai Medical College, Madurai, Tamil Nadu, India
Dr. K.R. Siddhar, Mangalore University, Mangalagangothri, Mangalore, Karnataka, India
Dr. Gunjan Biswas, Vidyasagar University, Midnapore, West Bengal, India

Plants

Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India
Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India
Dr. Shonil Bhagwat, Open University and University of Oxford, UK
Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India
Dr. Ferdinando Boero, Università del Salento, Lecce, Italy
Dr. Dale R. Calder, Royal Ontario Museum, Toronto, Ontario, Canada
Dr. Sophalis Cervancia, Unv. of Philippines Los Baños College Laguna, Philippines
Dr. F.B. Vincent Frens, University of Mauritius, Mauritius
Dr. Merlin Franco, Curtin University, Malaysia
Dr. V. Vaidyasar, St. Xavier’s College, Palayamkottai, Tamil Nadu, India
Dr. B.S. Khoda, Botanical Survey of India, Gangtok, Sikkim, India
Dr. Pankaj Kumar, Kadoorie Farm and Botanic Garden Corporation, Hong Kong S.A.R., China
Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India
Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
Dr. Vijaya Samaran, University of Mississippi, USA
Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantapur, India
Dr. K. Ravikumar, FRTU, Bengaluru, Karnataka, India
Dr. Aparna Vatwe, Pune, Maharashtra, India
Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China
Dr. Noor Azhar Mohamed Shazli, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
Dr. M.X. Vasudeva Rao, Shiv Ranjani Housing Society, Pune, Maharashtra, India
Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India
Dr. Mandar Datar, Agharkar Research Institute, Pune, Maharashtra, India
Dr. M.X. Janarthanam, Goa University, Goa, India
Dr. K. Kehriyaneg, Botanical Survey of India, India
Dr. Erol Vela, University of Montpellier, Montpellier, France
Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India
Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA
Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India
Dr. Anandita Mani-Fajad, University of the Philippines Los Banos, Laguna, Philippines
Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India
Dr. Aim. Alam, Banaras Hindu University [accredited by NAAC], Rajasthan, India
Dr. K.P. Rajesh, Zamorin’s Guruvayurappan College, GA College PO, Kozhikode, Kerala, India
Dr. David E. Boufford, Harvard University Herbaria, Cambridge, MA 02138-2020, USA
Dr. Ritesh Kumar Choudhary, Agharkar Research Institute, Pune, Maharashtra, India
Dr. Navendu Page, Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India

Invertebrates

Dr. R.K. Avasthi, Rohtak University, Haryana, India
Dr. D.B. Bastawade, Maharashtra, India
Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India
Dr. Kailash Chandra, Zoological Survey of India, Jabalpur, Madhya Pradesh, India
Dr. Anise Dippenslaar, University of Pretoria, South Africa
Dr. Rony Dowe, National Museum of Natural History, The Netherlands
Dr. Brian Fisher, California Academy of Sciences, USA
Dr. Richard Gallon, Ilanuduro, North Wales, L10 1UP
Dr. Hemant V. Ghate, Modern College, Pune, India
Dr. M. Monwar Hossain, Jahangirnagar University, Dhaka, Bangladesh
Mr. Jatshworn Singh Inrgumb, Biology Centre CAS, Branišovská, Czech Republic.
Dr. Ian J. Kitching, Natural History Museum, Cromwell Road, UK
Dr. George Mathew, Kerala Forest Research Institute, Peechi, India

For Focus, Scope, Aims, and Policies, visit https://threatenedtaxa.org/index.php/JoTT/aims_scope
For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions
For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/policies_various

ISSN 0974-7907 (Online); ISSN 0974-7893 (Print)
Publisher
Wildlife Information Liaison Development Society
www.wild.zooreach.org

Host
Zoo Outreach Organization
www.zooreach.org

No. 12, Thrivunnamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatty, Coimbatore, Tamil Nadu 641035, India
Ph: +91 9385339863 | www.threatenedtaxa.org
Email: sanjay@threatenedtaxa.org

Cover: Dorsal view of Mantis Shrimp Cladorina ichneumon (Fabricius, 1798) & Gonodactyllum demanii (Henderson, 1893). © Fisheries Research Station, Junagadh Agricultural University, Sikka.
Two new varieties of *Russula* Pers. (Basidiomycota: Russulaceae) from Sal forests of Shiwaliks, India

Jitender Kumar¹ & **Narender Singh Atri**²

¹Department of Botany, Rajiv Gandhi Govt. College, Chaura Maidan, Shimla, Himachal Pradesh 171004, India.
²Department of Botany, Punjabi University, Patiala, Punjab 147002, India.
¹jitenderthakur2010@gmail.com (corresponding author), ²narinderatri04@gmail.com

Abstract: This paper deals with two new varieties of *Russula* species, *R. camarophylla* var. *reticulospora* var. nov. and *R. aurea* var. *minuta* var. nov. These were collected from the Shiwalik range of northwestern India, in association with *Shorea robusta*. *Russula aurea* var. *minuta* differs from *R. aurea* in having small sized sporophores, dentate to wavy gill edges with golden or yellow deposition instead of smooth and much smaller spores. Whereas, mushroom *R. camarophylla* var. *reticulospora* is close to *Russula camarophylla* except for the larger carpophores that have white cream pileus surface and larger spores. In basidiospores warts are connected to form mostly complete reticulum instead of mostly isolated warts reported in *Russula camarophylla*. In view of the presence of some unique varied features in the presently examined collections two new varieties of *Russula* has been proposed.

Keywords: Diversity, Ectomycorrhiza, *R. camarophylla* var. *reticulospora* var. nov., *R. aurea* var. *minuta* var. nov., scanning electron microscopy, taxonomy.

Editor: Richard Mibey, Nairobi, Kenya.
Date of publication: 26 May 2022 (online & print)

Copyright: © Kumar & Atri 2022. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: This study was supported by Council of Scientific and Industrial Research, New Delhi, India (Grant number 09/140 (0159) 2014-EMR-1).

Competing interests: The authors declare no competing interests.

Author details: Dr. JITENDER KUMAR is currently working as assistant professor at Department of Botany, Rajiv Gandhi Govt. Degree College Chaura Maidan, Shimla. Dr. N.S. ATRI is a mycologist and retired professor from Department of Botany, Punjabi University, Patiala.

Author contributions: Both the authors carried out the research work. The first draft of the manuscript was written by Jitender Kumar and Narender Singh Atri commented on previous versions of the manuscript. Both the authors read and approved the final manuscript.

Acknowledgements: We would like to express our sincere gratitude to the Head, Department of Botany, Punjabi University, Patiala for providing laboratory facilities and to the Council of Scientific and Industrial Research (CSIR), New Delhi, India for financial assistance under CSIR-JRF fellowship scheme. To UGC, DST and DBT we are indebted for financial assistance under different schemes to the Department during the course of the present work.
INTRODUCTION

Genus *Russula* is one of the dominant basidiomycetous fungi genus which grow in a wide variety of habitats. These are mostly found in mycorrhizal association with variety of plants including trees (Corrales et al. 2016). Studies on taxonomy and diversity of genus *Russula* are inviting more attention now a days primarily because of their importance in human welfare, ecosystem functioning and stability. These macro-fungi are important source of food, medicine, nutraceuticals and also play a pivotal role in ecosystem strengthening and maintenance as mycorrhizal associates (Manoharachary et al. 2005). It is reported that *Russula* spp. can form EcM with many temperate and tropical plant families, including Leguminosae, Fagaceae, Cistaceae, Dipterocarpaceae, Salicaceae, Betulaceae, Nothofagaceae, Myrtaceae, and Pinaceae (Tedersoo et al. 2010; Wang et al. 2017). The compounds derived from these mushrooms are reported to boost up immune system and avert diseases thereby improving human health (Wasser 2002). Different species of *Russula* are known to possess anti-inflammatory, antiviral, antibacterial, antiparasitic, antioxidant, hepatoprotective, anticancer, and antidiabetic properties (Wasser 2011).

To date, approximately 1,100 *Russula* species have been reported worldwide (Kirk 2014) and distributed across a wide range of habitats from the tropics to arctic zones (Riviére et al. 2007; Ba et al. 2012). *Russula* is one of the dominant ectomycorrhizal genera in Indian Himalaya (Saini & Atri 1984, 1989; Atri & Saini 1986; Atri et al. 1994; Kumar & Atri 2016, 2019; Sharma et al. 2016) and is represented by ca. 158 taxa from India (Sharma et al. 2017). While investigating the EcM diversity of Sal forest, two varieties of *R. camarophylla* Romagn. and *R. aurea* Pers. were documented, which upon investigation were found to be new to science based on detailed macro- and micro-morphological examination. In the present study sporocarps and their EcM colonised roots were collected by tracing the hyphal or rhizomorph connections in association with *Shorea robusta* from pure Sal forests. These species are fully illustrated and described in this paper.

MATERIALS AND METHODS

Study area

Area selected for the present investigation is Sal forests of Shiwalik mountain range of northwestern India (Figure 1), which represent the geologically lowest and youngest mountain range of Himalaya. The study area is located between 30.316N, 78.032E. Elevation range of the area is 400–1500 m and vegetation of the area is typical of tropical moist deciduous type (Champion & Seth 1968).

Sampling, identification and characterization

Sporocarps were collected from different localities of pure Sal forests, during the rainy season of 2013–2015. Macromorphological features were recorded from fresh collections in the field and colour codes used are that of Kornerup & Wanscher (1978). After noting down morphological characters on the field key (Atri et al. 2005) some pieces of sporocarps from cap and stipe were preserved in liquid preservative (25 ml rectified alcohol (95%) + 5 ml formalin (37%) + 70 ml distilled water) for studying the microscopic characters. By adopting the standard procedures spore deposit was taken after bringing the specimens to the temporary laboratory setup. Sporocarps were air dried at 40–45°C in a drier specially designed for drying mushroom specimens (Atri et al. 2005) which were finally packed in a cellophane paper packet for permanent preservation in Punjabi University Herbarium under PUN. The cross section of pileus and longitudinal section of stipe were stained in congo red for examination, drawn under a compound microscope and photographed under digital microscope (Leica DM4000 B LED). Observation of basidia, cystidia, and elements of pileipellis and stipitipellis were recorded for further use in taxonomic categorization. Melzer’s reagent was used.

Figure 1. Location map of Study area (Red).
Two new varieties of *Russula* Pers. from Shiwaliks

Kumar & Atri

(2022) JTT 14(5): 21076–21083

Two new varieties of *Russula* Pers. from Shiwaliks

Kumar & Atri

(2022) JTT 14(5): 21076–21083

Scanning electron microscopy

Scanning electron microscopic (SEM) studies of basidiospores were carried out with JSM6610LV GEOL scanning electron microscope. For SEM examination basidiospores from spore print and lamellae tissue were mounted on a double-sided adhesive tape pasted on a metallic specimen holder or stub. The material was scanned at different magnification ranging 3,000–15,000 X in high vacuum mode to observe pattern of spore ornamentation.

TAXONOMY

Russula aurea Pers. var. *minuta* var. nov.

MycoBank number: MB834095

Diagnosis: *Russula aurea* Pers. var. *minuta* var. nov. is characterised by small golden to brightly yellow pileus with more darker brownish-yellow centre; dentate to wavy gill edges with golden deposition instead of smooth; sour taste, much smaller spores size and presence of pilocystidia.

Etymology: The variety name is based on the smaller size of sporophore and basidiospore as compared to *Russula aurea*.

Holotype: PUN 9112, Male, 27 July 2013, Rajban, Dehradun, Uttarakhand, India, 30.316N, 78.032E, 800 m, coll. J. Kumar.

Paratype: PUN 9113, 1 ex., Male, 21 August 2015, Kalsi, Dehradun, Uttarakhand, India, 30.316N, 78.032E, 1,190 m, coll. J. Kumar.

Taxonomic description

Sporophores 2.0–2.5 cm in height. Pileus 1.3–2.0 cm broad, convex to hemispherical when young, flattened depressed at maturity; centre umbonate when young, golden (6C7) to brightly yellow with more darker brownish-yellow centre; margin regular to slightly irregular, non-splitting at maturity, moist, unchanging, apex depressed at maturity with slight umbo; cuticle half peeling; flesh 0.1 cm thick in the centre, almost absent along the margin, white (1A1), changes to light brown on bruising and cutting, brittle; taste sour, odour mild. Lamellae adnexed to slightly adnate, equal, moderately broad (2–3 mm), crowded (12–16 gills/cm), white with golden edges; gill edges not smooth, eroded or wavy.

Stipe central, 1.5–2.0 cm in length, 0.3–0.5 cm broad, cylindrical to slightly tapering downward, white (1A1) in the upper half, yellowish to pale white in the lower half, unchanging, first solid, than hollow, smooth. Spore deposit deep ochre.

Basidiopores 5.0–6.5 (7.5) × 4.0–5.0 (6.0) µm (excluding ornamentation), broadly ellipsoidal to ellipsoid (Q =1.2–1.3), warty; warts up to 0.8 µm high, mostly connected by thick and thin lines to form partial to complete reticulum, ornamentation type IIIa, IIIb, IV, amyloid; plage hyaline, indistinct; apiculate, apiculus up to 1.6 µm long. Basidia 19.5–32.6 × 6.5–9.0 µm, clavate, bisporic to tetrasporic, hyaline, abundant; sterigmata up to 3.5 µm long; pleurocystidia 26.0–40.9 × 6.5–9.8 µm, clavate to ventricose granulated; cheilocystidia 22.5–37.4 × 4.1–13.1 µm, similar to pleurocystidia. Pileus cuticle clearly differentiated, epicutis gelatinised, heteromorous, palisade having interwoven projecting septate 3–5 µm broad hyphae mixed with 5–10 µm broad sphaerocyst and dermatocystidia, cuticle hyphae and cellular mass having dark yellow content throughout; pilocystidia

Figure 2. *Russula aurea* var. *minuta* var. nov: A—Sporophores | B—Basidiospores | C—Hymenophore showing basidia | D—Pleurocystidia | E—Cheilocystidia | F—Cross section through stipe showing cuticular details and context | G—Cross section through pileus showing cuticular details and context.
Two new varieties of Russula Pers. from Shiwaliks

Image 1. *Russula aurea* Pers. var. *minuta* var. nov. a–b—Sporophores | c–d—Scanning electron photographs of basidiospores | e—Hymenophore showing basidia and cystidia | f—Pleurocystidia | g—Cheilocystidia | h—Cross section through pileus showing cuticular details and context. Scale bar a–b= 1 cm.
Two new varieties of Russula Pers. from Shiwaliks
Kumar & Atri

24.0–40.8 × 4.9–8.2 µm, thin walled, clavate, fusiform to fusoid ventricose with acute to blunt end; context heteromerous having multiseptate 3.0–6.5 µm broad hyphae intermingled with 8.0–36.0 × 8.0–32.6 µm rosettes of sphaerocysts. Hymenophoral trama 16–100 µm, heteromerous with up to 3.3–5.0 µm broad hyphae intermingled with 8.0–36.0 × 8.0–32.6 µm sphaerocysts. Stipe cuticle gelatinised with more or less parallel arranged 1.6–6.5 µm broad septate hyphae having yellowish content; context made up of 12–28 × 12–24 µm sized rosettes of sphaerocysts and 4–6 µm broad separte hyphae in alternate manner. Clamp connections absent.

Chemical colour reaction: Stipe surface pinkish with FeSO₄, Gills turns carmine red in Sulphovanillin.

Habitat: Sparophores directly attached to the roots at the base of Shorea robusta tree.

Collections examined: Uttrakhand: Dehradun, Rajban (800 m), in groups in Sal forest in association with Shorea robusta. Jitender Kumar, PUN 9112, 27 July 2013. Dehradun, Kalsi (1,190 m), solitary in Sal forest in association with S. robusta tree. Jitender Kumar PUN 9113, 21 August 2015.

Remarks: The overall diagnostic characters of the presently examined collection are in agreement with Russula aurea (Rayner 1970; Romagnesi 1967; Das & Marstad 2014) except that the carpophores are much smaller in size (2.0–2.5 cm instead of 4–9 cm), gill edges not smooth (dentate to wavy with golden or yellow deposition instead of smooth), much smaller spores size (5–7.5 × 4–6 µm instead of 7.5–10 × 6–8 µm) and presence of pilocystidia which are absent in case of Russula aurea. In view of the presence of some unique varied features in the presently examined collections in comparison to R. aurea, a new variety minuta has been named.

Russula camarophylla Romagn. var. reticulospora var. nov.

(MycoBank number: MB834095)

Diagnosis: Russula camarophylla Romagn. var. reticulospora var. nov. is characterised by larger sporophore with creamish-white pileus surface, distantly spaced lamellae, very hard and compact flesh and larger spore size. Also in basidiospores warts are connected to form mostly dense reticulum.

Etymology: The variety name is based on the densely reticulated basidiospores.

Holotype: PUN 9124, Male, 30 August 2013, Kalsi, Dehradun, Uttarakhand, India, 1,190 m, 30.316N, 78.032E, coll. J. Kumar.

Taxonomic description

Sporophore 7.5 cm in height. Pileus 10 cm broad, umbilicate with a depressed disc and irregular margin; pileus surface moist, glabrous, cream white to white (1A1), not peeling; flesh 5 mm thick in the centre, off white to slightly creamish, unchanging. Lamellae unequal broadly adnate to decurrent, distant (3–4 gills/cm), broad (11 mm at the centre), creamish-white to orange white (5A2), forked near the base, lamellulae present, gill edges smooth, normal. Stipe 2 cm long and up to 2 cm broad, central, solid, white, fleshy, concolorous with the pileus, unchanging on cutting and bruising; flesh taste spicy; odour fruity, spore deposit yellowish-white.

Basidiospores 6.5–8.0 (9.0) × 5.0–7.0 (7.5) µm, subglobose to broadly ellipsoid (Q= 1.12–1.33), densely ornamented, warty, warts up to 0.5 µm, connected to form mostly complete reticulum, superahilar area usually with low ornamentation, ornamentation type Ilia, Ilib; apiculate, apiculus up to 1.6 µm in size. Basidia 35–57 × 5.0–8.5 µm, clavate to subcylindric, 2–4 spored, sterigmata 6.5–9.8 µm long. Pleurocystidia 39.0–86.5

Figure 3. Russula camarophylla Romagn. var. reticulospora var. nov: A—Sporophore | B—Basidiospores | C—Hymenophore showing basidia | D—Pleurocystidia | E—Cheilocystidia | F—Cross section through pileus showing cuticular details and context | G—Cross section through stipe showing cuticular details and context.
Image 2. *Russula camarophylla* Romagn. var. *reticulospora* var. nov.: a–b—Sporophores | c–d—Scanning electron microphotographs of basidiospores | e—Hymenophore showing basidia and cystidia | f—Pleurocystidia | g–h—Cross section through pileus showing cuticular details and context. Scalebar a–b= 2 cm.
DISCUSSION

During the present study, *R. aurea* var. *minuta* and *R. camarophylla* var. *reticulospora* were found forming direct organic connection with *Shorea robusta*. The overall diagnostic characters of the presently examined collections of *R. aurea* var. *minuta* are in agreement with *Russula aurea* Pers. which is commonly known as the gilded brittle gill or golden *Russula* and is an uncommon species of mushroom found in deciduous woodland forests. Its specific epithet aurea has been derived from the Latin word *aurum*, which means golden. Unlike many red-capped members of the genus, *Russula aurea* is edible and mild-tasting and is easily characterised in the field by its golden pileus, free to adnexed broad fairly distant golden gills, cylindrical smooth light yellow stipe and brittle yellow flesh. Mostly it is reported to grow solitary or scattered forming mycorrhizal association with pine trees (Romagnesi 1967; Rayner 1970; Das & Marstad 2014). *Russula aurea* var. *minuta* differs from *R. aurea* except in having small sized sporophores, dentate to wavy gill edges with golden or yellow deposition instead of smooth, much smaller spores and presence of pilocystidia which are absent in case of *Russula aurea*. In view of this a new variety *Russula aurea* var. *minuta* has been proposed. *Russula auroa* probably appears to be morphologically closest species to this undescribed taxon from which it differs in having fairly crowded pale cream lamellae with abundant forkation near the stipe, mild taste, and absence of dermatocystidia in pileipellis and low warted spores (0.25–0.5 μm) with few connections (Romagnesi 1967). Another close taxon is *Russula aurantiaca* which differs from *R. aurea* var. *minuta* in having usually brick-orange, copper to carmine coloured cap, widely spaced rather thick bright yellow ochre strongly interveined lamellae and presence of mild to slightly acidic taste (Romagnesi 1967). Earlier *Russula aurea* was known as *R. aurata* and under this name it was documented from different localities of northwestern Himalaya from coniferous and angiospermic forest (Saini & Atri 1984, 1989; Atri & Saini 1986; Atri et al. 1994). The present collection is found in pure Sal tree forest in close vicinity to *Shorea robusta* tree from Uttarakhand.

Russula camarophylla, a rare western Mediterranean European representative of section Archaeinae is characterized by its camarophylloid habit, pale ochre or creamish sporophores with distant lamellae, very hard and compact flesh, hygrophoroid basidia and tiny spores with barely visible ornamentation (Romagnesi 1968). The present collection of *R. camarophylla* var. *reticulospora* is close to *Russula camarophylla* (Romagnesi 1968) except that the carpophores are larger in size with white cream pileus surface and larger spore size. In basidiospores warts are connected to form mostly complete reticulum instead of mostly isolated warts reported in case of *Russula camarophylla* (Romagnesi 1968). In view of this a new variety *Russula camarophylla* var. *reticulospora* has been proposed. The apical swelling of hyphal terminations in the pileipellis is an important feature that is very common within *Russula camarophylla* (Buyck et al. 2003) and presently examined collection. *R. camarophylla* var. *reticulospora* also resembles the recently described...
Russula capillaris, by Buyck (in Wang et al. 2019) from Madagascar. The latter species is not only very similar in the field, but it also possesses similar apical swellings in the hyphal terminations of pileipellis. Spores, however, are much smaller with isolated and very low warts (0.1–0.2 μm) in R. capillaris and, again, the pileocystidia are not septate. Russula camarophylla is a very rare species and has been found only a few times in France (Buyck et al. 2003), northern Italy (Setti & Bigoni 1998; Boffelli 2012) and Austria (Pidlich-Aigner & Klofac 2018).

CONCLUSION

Two new varieties of Russula species, viz. R. camerophylla var. reticulospora var. nov. and R. aurora var. minuta var. nov. have been described based upon detailed macro- and micromorphological comparison with already existing Russula species. The newly proposed varieties are putative mycorrhizal associates of Sal and were found in direct organic connection with Shorea robusta roots.

REFERENCES

Communications

Drought may severely reduce the ability of wild Asian Elephants *Elephas maximus* (Mammalia: Proboscidea: Elephantidae) to resist opportunistic infections

Cases of fatal electrocution of the endangered Javan Gibbons (Mammalia: Primates: Hylobatidae) by power lines

— Yoonjung Yi, Soojung Ham, Rahayu Oktaviyan, Mia Clarissa Dewi, Muhammad Nur, Ani Mardiastuti & Jae. C. Cheo, Pp. 20964–20969

Nesting habits of the Baya Weaver *Ploceus philippinus* (Linnaeus, 1766) in the agricultural landscape of Tindivanam, Tamil Nadu, India

— M. Pandian, Pp. 20970–20987

A checklist of avifauna from different habitats of semi-arid landscape in western parts (Mandsaur and Ratlam districts) of Madhya Pradesh, India

— Koushik Bhattacharjee & Shuvadip Adhikari, Pp. 20988–21001

Post-release growth of captive-reared Gharial *Gavialis gangeticus* (Gmelin, 1789) (Reptilia: Crocodylia: Gavialidae) in Chitwan National Park, Nepal

— Bed Bahadur Khadka, Ashish Bashyal & Phoebe Griffith, Pp. 21002–21009

Occurrence patterns of herpetofauna in different habitat types of western Terai Arc Landscape, India

— Gajendra Singh Mehra, Nakulananada Mohancy & Sushil Kumar Dutta, Pp. 21010–21018

Ichthyo-parasitological studies in northeastern India

— Arup Kumar Hazarika & Bobita Bordoloi, Pp. 21019–21024

Serosurvey of viral pathogens in free-ranging dog populations in the high altitude Trans-Himalayan region

— Chandrima Home, Ajay Bijoor, Yash Veer Bhatnagar & Abi Tamim Vanak, Pp. 21025–21031

Diversity and distribution of mantis shrimps (Arthropoda: Crustacea: Stomatopoda) in the Gulf of Kachchh, Gujarat, India

— Piyush Vadher, Hitesh Kardani & Imtiyaz Beleem, Pp. 21032–21042

Bionomics study of *Mansonia* (Diptera: Culicidae) in a filariasis-endemic area of Sedang Village, Banyunias Regency, South Sumatra, Indonesia

— Rini Pratwii, Chairil Anwar, Ahmad Ghiffari & Adri Huda, Pp. 21043–21054

Plant species diversity in a tropical semi-evergreen forest in Mizoram (northeastern India): assessing the effectiveness of community conservation

— S.T. Lalzarzovi & Lahnintluanga, Pp. 21055–21067

Floristic studies on mangrove vegetation of Kanika Island, Bhadrak District, Odisha, India

— Po. Poornima, Pp. 21068–21075

Two new varieties of *Russula* Pers. (Basidiomycota: Russulaceae) from Sal forests of Shiwaliks, India

— Jitender Kumar & Narendra Singh Attri, Pp. 21076–21083

New additions to the lichen biota of Assam from Dhubri district, northeastern India

— Suparna Biswas, Rebecca Daimari, Pungbili Islary, Sanjeeva Nayaka, Siljo Joseph, Dalip Kumar Upreti & Pranjit Kumar Sarma, Pp. 21084–21090

Genus *Gymnopilus* (Agaricales: Strophariaceae): additions to the agarics of India

— N.A. Wani, M. Kaur & N.A. Malik, Pp. 21091–21101

Review

Environmental DNA as a tool for biodiversity monitoring in aquatic ecosystems – a review

— Manisha Ray & Govindhaswamy Umapathy, Pp. 21102–21116

Short Communications

New record and update on the geographic distribution of the Egyptian Tomb Bat *Taphozous perforatus* (E. Geoffroy, 1818) in Cameroon

First definite record of Collared Pratincole *Glareola pratincola* Linnaeus, 1766 (Aves: Charadriiformes: Glareolidae) from Goa, India

— Rupali Pandit, Mangirish Dharwadkar & Justino Rebello, Pp. 21122–21124

Notes

Nectar robbing by sunbirds on the flowers of *Morinda pubescens* J.E. Smith (Rubiaceae)